Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model

被引:0
|
作者
Kutucu, Hakan [1 ]
Almryad, Ayad [1 ]
机构
[1] Karabuk Univ, Dept Comp Engn, Karabuk, Turkey
来源
PROCEEDINGS OF THE 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP) | 2016年
关键词
Artificial neural network; solar-radiation potential; renewable energy; Libya; RADIATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we develop an artificial neural network model to predict the potential of solar power in Libya. We use multilayered, feed-forward, back-propagation neural networks for the mean monthly solar radiation using the data of 25 cities spread over Libya for the period of 6 years (2010-2015). Meteorological and geographical data (longitude, latitude, and altitude, month, mean sunshine duration, mean temperature, and relative humidity) are used as input to the network. The solar radiation is in the output layer of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation for training and testing datasets are higher than 98%. Hence, the predictions from ANN model in locations where solar radiation data are not available has a high reliability.
引用
收藏
页码:356 / 359
页数:4
相关论文
共 50 条
  • [1] Modelling of solar energy potential in Nigeria using an artificial neural network model
    Fadare, D. A.
    APPLIED ENERGY, 2009, 86 (09) : 1410 - 1422
  • [2] Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system
    Rumbayan, Meita
    Abudureyimu, Asifujiang
    Nagasaka, Ken
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (03) : 1437 - 1449
  • [3] Mapping of solar energy potential in Fiji using an artificial neural network approach
    Oyewola, Olanrewaju M.
    Ismail, Olawale S.
    Olasinde, Malik O.
    Ajide, Olusegun O.
    HELIYON, 2022, 8 (07)
  • [4] Modeling of solar energy systems using artificial neural network: A comprehensive review
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Abd Elaziz, Mohamed
    Kabeel, A. E.
    Wang Guilan
    Zhang Haiou
    SOLAR ENERGY, 2019, 180 : 622 - 639
  • [5] Modeling Solar Energy Potential in a Tehran Province Using Artificial Neural Networks
    Ramedani, Zeynab
    Omid, Mahmoud
    Keyhani, Alireza
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2013, 10 (04) : 427 - 441
  • [6] Artificial Neural Network Prediction to Identify Solar Energy Potential In Eastern Indonesia
    Aryani, Dharma
    Pranoto, Sarwo
    Fajar
    Intang, A. Nur
    Rhamadhan, Firza Zulmi
    2023 IEEE 3RD INTERNATIONAL CONFERENCE IN POWER ENGINEERING APPLICATIONS, ICPEA, 2023, : 252 - 256
  • [7] Artificial neural network analysis of Moroccan solar potential
    Ouammi, Ahmed
    Zejli, Driss
    Dagdougui, Hanane
    Benchrifa, Rachid
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (07) : 4876 - 4889
  • [8] Assessment and Mapping of Solar Energy Potential Using Artificial Neural Network and GIS Technology in the Southern Part of India
    Anwar, Khalid
    Deshmukh, Sandip
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2018, 8 (02): : 974 - 985
  • [9] Solar Energy Potential Forecasting and Optimization Using Artificial Neural Network: South Africa Case Study
    Leholo, Sempe
    Owolawi, Pius
    Akindeji, Kayode
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 533 - 536
  • [10] Assessment of diffuse solar energy under general sky condition using artificial neural network
    Alam, Shah
    Kaushik, S. C.
    Garg, S. N.
    APPLIED ENERGY, 2009, 86 (04) : 554 - 564