EXISTENCE, UNIQUENESS AND ASYMPTOTIC BEHAVIOUR FOR FRACTIONAL POROUS MEDIUM EQUATIONS ON BOUNDED DOMAINS

被引:137
作者
Bonforte, Matteo [1 ]
Sire, Yannick [2 ]
Luis Vaiquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Aix Marseille, I2M, Ctr Math & Informat Technopole Chateau Giombert, Marseille, France
关键词
Fractional Laplace operators; porous medium diffusion; existence and uniqueness theory; asymptotic behaviour; fractional Sobolev spaces; NONLINEAR DIFFUSION; DIRICHLET PROBLEM; SOBOLEV; REGULARITY; CONSTANTS;
D O I
10.3934/dcds.2015.35.5725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider nonlinear diffusive evolution equations posed on bounded space domains, governed by fractional Laplace-type operators, and involving porous medium type nonlinearities. We establish existence and uniqueness results in a suitable class of solutions using the theory of maximal monotone operators on dual spaces. Then we describe the long-time asymptotics in terms of separate-variables solutions of the friendly giant type. As a by-product, we obtain an existence and uniqueness result for semilinear elliptic non local equations with sub-linear nonlinearities. The Appendix contains a review of the theory of fractional Sobolev spaces and of the interpolation theory that are used in the rest of the paper.
引用
收藏
页码:5725 / 5767
页数:43
相关论文
共 47 条
[1]  
Adams R, 2003, PURE APPL MATH, V140
[2]  
[Anonymous], 1958, Ricerche Mat
[3]  
[Anonymous], 1959, Estratto Ann. Sc. Norm. Super. Pisa
[4]  
[Anonymous], 1985, Sobolev Spaces
[5]   LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS [J].
ARONSON, DG ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) :378-412
[6]  
Aronszajn N., 1955, Techn. Report of Univ. of Kansas, V14, P77
[7]   Continuity of the temperature in boundary heat control problems [J].
Athanasopoulos, I. ;
Caffarelli, L. A. .
ADVANCES IN MATHEMATICS, 2010, 224 (01) :293-315
[8]   THE CONTINUOUS DEPENDENCE ON PHI OF SOLUTIONS OF UT-DELTA-PHI(U)=0 [J].
BENILAN, P ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (02) :161-177
[9]  
Blumenthal RM., 1959, PAC J MATH, V9, P399
[10]  
Bonforte M., ARCH RATION MECH ANA