Nonlinear optimisation method for image segmentation and noise reduction using geometrical intrinsic properties

被引:6
作者
Mahmoodi, S
Sharif, BS
机构
[1] Univ Newcastle, Sch Biol, Dept Psychol, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Univ Newcastle, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
optimisation; edge detection; noise reduction; partial differential equations; differential geometry;
D O I
10.1016/j.imavis.2005.11.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the optimisation of a nonlinear functional for image segmentation and noise reduction. Equations optimising this functional are derived and employed to detect edges using geometrical intrinsic properties such as metric and Riemann curvature tensor of a smooth differentiable surface approximating the original image. Images are then smoothed using a Helmholtz type partial differential equation. The proposed approach is shown to be very efficient and robust ill the presence of noise, and the reported results demonstrate better performance than the conventional derivative based edge detectors. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:202 / 209
页数:8
相关论文
共 26 条
  • [1] Aubert G, 2002, Mathematical problems in image processing: Partial differential equations and the calculus of variations
  • [3] Carmo M. P. D., 1976, DIFFERENTIAL GEOMETR
  • [4] Geodesic active contours
    Caselles, V
    Kimmel, R
    Sapiro, G
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 22 (01) : 61 - 79
  • [5] CASELLES V, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P694, DOI 10.1109/ICCV.1995.466871
  • [6] Active contours without edges for vector-valued images
    Chan, TE
    Sandberg, BY
    Vese, LA
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2000, 11 (02) : 130 - 141
  • [7] Active contours without edges
    Chan, TF
    Vese, LA
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (02) : 266 - 277
  • [8] A level set algorithm for minimizing the Mumford-Shah functional in image processing
    Chan, TF
    Vese, LA
    [J]. IEEE WORKSHOP ON VARIATIONAL AND LEVEL SET METHODS IN COMPUTER VISION, PROCEEDINGS, 2001, : 161 - 168
  • [9] Gelfand I., 1963, CALCULUS VARIATIONS
  • [10] Tube methods for BV regularization
    Hinterberger, W
    Hintermüller, M
    Kunisch, K
    Von Oehsen, M
    Scherzer, O
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2003, 19 (03) : 219 - 235