Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production

被引:77
作者
León, J
Royo, J
Vancanneyt, G
Sanz, C
Silkowski, H
Griffiths, G
Sánchez-Serrano, JJ
机构
[1] Univ Autonoma Madrid, CSIC, Ctr Nacl Biotecnol, E-28049 Madrid, Spain
[2] CSIC, Inst Grasa, Seville 41012, Spain
[3] Hort Res Int, Warwick 35CV 9EF, England
关键词
D O I
10.1074/jbc.M107763200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipoxygenases catalyze the formation of fatty acid hydroperoxide precursors of an array of compounds involved in the regulation of plant development and responses to stress. To elucidate the function of the potato 13-lipoxygenase 111 (LOX HI), we have generated transgenic potato plants with reduced expression of the LOX H1 gene as a consequence of co-suppression-mediated gene silencing. Three independent LOX H1-silenced transgenic lines were obtained, having less than 1% of the LOX H1 protein present in wild-type plants. This depletion of LOX HI has no effect on the basal or wound-induced levels of jasmonates derived from 13-hydroperoxylinolenic acid. However, LOX H1 depletion results in a marked reduction in the production of volatile aliphatic C6 aldehydes. These compounds are involved in plant defense responses, acting as either signaling molecules for wound-induced gene expression or as antimicrobial substances. LOX H1 protein was localized to the chloroplast and the protein, expressed in Escherichia coli, showed activity toward unesterified linoleic and linolenic acids and plastidic phosphatidylglycerol. The results demonstrate that LOX H1 is a specific isoform involved in the generation of volatile defense and signaling compounds through the HPL branch of the octadecanoid pathway.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 50 条
[1]   PLANT MICROSOMAL PHOSPHOLIPASES EXHIBIT PREFERENCE FOR PHOSPHATIDYLCHOLINE WITH OXYGENATED ACYL-GROUPS [J].
BANAS, A ;
JOHANSSON, I ;
STYMNE, S .
PLANT SCIENCE, 1992, 84 (02) :137-144
[2]   C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes [J].
Bate, NJ ;
Rothstein, SJ .
PLANT JOURNAL, 1998, 16 (05) :561-569
[3]   CHARACTERIZATION OF AN ARABIDOPSIS-LIPOXYGENASE GENE RESPONSIVE TO METHYL JASMONATE AND WOUNDING [J].
BELL, E ;
MULLET, JE .
PLANT PHYSIOLOGY, 1993, 103 (04) :1133-1137
[4]   LIPOXYGENASE GENE-EXPRESSION IS MODULATED IN PLANTS BY WATER DEFICIT, WOUNDING, AND METHYL JASMONATE [J].
BELL, E ;
MULLET, JE .
MOLECULAR & GENERAL GENETICS, 1991, 230 (03) :456-462
[5]   A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS [J].
BELL, E ;
CREELMAN, RA ;
MULLET, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) :8675-8679
[6]   THE CAULIFLOWER MOSAIC VIRUS-35S PROMOTER - COMBINATORIAL REGULATION OF TRANSCRIPTION IN PLANTS [J].
BENFEY, PN ;
CHUA, NH .
SCIENCE, 1990, 250 (4983) :959-966
[7]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[8]   THE OCTADECANOIC PATHWAY - SIGNAL MOLECULES FOR THE REGULATION OF SECONDARY PATHWAYS [J].
BLECHERT, S ;
BRODSCHELM, W ;
HOLDER, S ;
KAMMERER, L ;
KUTCHAN, TM ;
MUELLER, MJ ;
XIA, ZQ ;
ZENK, MH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (10) :4099-4105
[9]   Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides [J].
Blee, E ;
Joyard, J .
PLANT PHYSIOLOGY, 1996, 110 (02) :445-454
[10]   Phytooxylipins and plant defense reactions [J].
Blée, E .
PROGRESS IN LIPID RESEARCH, 1998, 37 (01) :33-72