Sodium-based batteries: from critical materials to battery systems

被引:217
作者
Li, Fang [1 ]
Wei, Zengxi [1 ]
Manthiram, Arumugam [2 ]
Feng, Yuezhan [3 ]
Ma, Jianmin [1 ,3 ]
Mai, Liqiang [4 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
[2] Univ Texas Austin, Texas Mat Inst, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Henan, Peoples R China
[4] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-METAL OXIDES; HIGH-PERFORMANCE ANODE; NITROGEN-DOPED CARBON; ENHANCED ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE LI-CO2 BATTERIES; PRUSSIAN BLUE ANALOGS; HIGH RATE-CAPACITY; X-RAY-DIFFRACTION; LONG CYCLE LIFE; ION BATTERIES;
D O I
10.1039/c8ta11999f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-based energy storage systems are attracting tremendous attention along with the growing demand for electric vehicles and grid-scale energy storage. Sharing similar intercalation chemistry to their lithium counterpart, sodium-ion based systems show promising potential for large-scale application due to the benefit of the low cost and natural abundance of sodium sources. However, despite the rapid progress, sodium-based energy storage systems still face enormous challenges such as slow kinetics and unstable cyclability, which continue to attract intense research efforts. In this review, we briefly summarize the recent progress in the material design for sodium-ion batteries, including both inorganic and organic materials. Then, we systematically summarize the current strategies for building post-sodium batteries, typically Na-O-2, Na-S, Na-Se, and Na-CO2, with a focus on the key components of different devices, including the electrode materials, electrolytes, and cell structure. Particularly, we discuss in detail the reaction path between Na and S (Se) to facilitate the understanding of the electrochemical mechanism of sodium-ion based systems. Furthermore, to highlight the recent progress, we discuss the design and optimization of Na-O-2 (CO2) batteries through an evaluation of the electrolytes and cathode configuration with suitable gas channels, which are critical factors to determine the reaction mechanism. Finally, the current challenges and future perspectives of sodium-based energy systems are also presented.
引用
收藏
页码:9406 / 9431
页数:26
相关论文
共 239 条
[11]   Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries [J].
Bianchini, Matteo ;
Xiao, Penghao ;
Wang, Yan ;
Ceder, Gerbrand .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[12]   Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries [J].
Bie, Xiaofei ;
Kubota, Kei ;
Hosaka, Tomooki ;
Chihara, Kuniko ;
Komaba, Shinichi .
JOURNAL OF POWER SOURCES, 2018, 378 :322-330
[13]   Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery [J].
Bugnon, Lucienne ;
Morton, Colin J. H. ;
Novak, Petr ;
Vetter, Jens ;
Nesvadba, Peter .
CHEMISTRY OF MATERIALS, 2007, 19 (11) :2910-2914
[14]   Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application [J].
Cai, Yangsheng ;
Fang, Guozhao ;
Zhou, Jiang ;
Liu, Sainan ;
Luo, Zhigao ;
Pan, Anqiang ;
Cao, Guozhong ;
Liang, Shuquan .
NANO RESEARCH, 2018, 11 (01) :449-463
[15]   Na2Ti6O13 Nanorods with Dominant Large Interlayer Spacing Exposed Facet for High-Performance Na-Ion Batteries [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Pang, Wei Kong ;
Liu, Huiqiao ;
Zhou, Tengfei ;
Guo, Zaiping ;
Wang, Yijing ;
Yuan, Huatang .
SMALL, 2016, 12 (22) :2991-2997
[16]  
Carter R. E., 2017, NANO LETT, V11, P6243
[17]   A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability [J].
Carter, Rachel ;
Oakes, Landon ;
Douglas, Anna ;
Muralidharan, Nitin ;
Cohn, Adam P. ;
Pint, Cary L. .
NANO LETTERS, 2017, 17 (03) :1863-1869
[18]   Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries** [J].
Castillo-Martinez, Elizabeth ;
Carretero-Gonzalez, Javier ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (21) :5341-5345
[19]   Porous MoS2/Carbon Spheres Anchored on 3D Interconnected Multiwall Carbon Nanotube Networks forUltrafast Na Storage [J].
Chen, Biao ;
Lu, Huihui ;
Zhou, Jingwen ;
Ye, Chao ;
Shi, Chunsheng ;
Zhao, Naiqin ;
Qiao, Shi-Zhang .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[20]   Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Ji, Xiao ;
Gao, Tao ;
Hou, Singyuk ;
Zhou, Xiuquan ;
Wang, Luning ;
Wang, Fei ;
Yang, Chongyin ;
Chen, Long ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1218-1225