Towards highly efficient thin-film solar cells with a graded-bandgap CZTSSe layer

被引:16
作者
Ahmad, Faiz [1 ]
Lakhtakia, Akhlesh [1 ,2 ]
Anderson, Tom H. [3 ]
Monk, Peter B. [3 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, NanoMM Nanoengn Metamat Grp, University Pk, PA 16802 USA
[2] Danmarks Tekniske Univ, Inst Mekan Teknol, Sekt Konstrukt & Prod Udvikling, DK-2800 Lyngby, Denmark
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
JOURNAL OF PHYSICS-ENERGY | 2020年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
bandgap grading; optoelectronic optimization; thin-film solar cell; CZTSSe solar cell; earth-abundant materials; TECHNOLOGIES;
D O I
10.1088/2515-7655/ab6f4a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A coupled optoelectronic model was implemented along with the differential evolution algorithm to assess the efficacy of grading the bandgap of the Cu2ZnSn(S xi Se1-xi)(4) (CZTSSe) layer for enhancing the power conversion efficiency of thin-film CZTSSe solar cells. Both linearly and sinusoidally graded bandgaps were examined, with the molybdenum back reflector in the solar cell being either planar or periodically corrugated. Whereas an optimally graded bandgap can dramatically enhance the efficiency, the effect of periodically corrugating the backreflector is modest at best. An efficiency of 21.74% is predicted with sinusoidal grading of a 870 nm thick CZTSSe layer, in comparison to 12.6% efficiency achieved experimentally with a 2200 nm thick homogeneous CZTSSe layer. High electron-hole-pair generation rates in the narrow-bandgap regions and a high open-circuit voltage due to a wider bandgap close to the front and rear faces of the CZTSSe layer are responsible for the high enhancement of efficiency.
引用
收藏
页数:18
相关论文
共 69 条
[1]  
Adachi S., 2015, EARTH ABUNDANT MAT S
[2]   Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading [J].
Ahmad, Faiz ;
Anderson, Tom H. ;
Monk, Peter B. ;
Lakhtakia, Akhlesh .
APPLIED OPTICS, 2019, 58 (22) :6067-6078
[3]   Optimization of light trapping in ultrathin nonhomogeneous CuIn1-ξGaξSe2 solar cell backed by 1D periodically corrugated backreflector [J].
Ahmad, Faiz ;
Anderson, Tom H. ;
Monk, Peter B. ;
Lakhtakia, Akhlesh .
NANOSTRUCTURED THIN FILMS XI, 2018, 10731
[4]   On optical-absorption peaks in a nonhomogeneous thin-film solar cell with a two-dimensional periodically corrugated metallic backreflector [J].
Ahmad, Faiz ;
Anderson, Tom H. ;
Civiletti, Benjamin J. ;
Monk, Peter B. ;
Lakhtakia, Akhlesh .
JOURNAL OF NANOPHOTONICS, 2018, 12 (01)
[5]   Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells [J].
Anderson, Tom H. ;
Civiletti, Benjamin J. ;
Monk, Peter B. ;
Lakhtakia, Akhlesh .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407
[6]   Optimization of nonhomogeneous indium-gallium-nitride Schottky-barrier thin-film solar cells [J].
Anderson, Tom H. ;
Lakhtakia, Akhlesh ;
Monk, Peter B. .
JOURNAL OF PHOTONICS FOR ENERGY, 2018, 8 (03)
[7]  
[Anonymous], 2012, ELECTROMAGNETIC FIEL
[8]  
[Anonymous], 2015, P 42 IEEE PHOT SPEC
[9]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[10]   KRAMERS-KRONIG ANALYSIS OF THE REFLECTIVITY SPECTRA OF 2H-MOS2, 2H-MOSE2 AND 2H-MOTE2 [J].
BEAL, AR ;
HUGHES, HP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (05) :881-890