Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative perturbation theory

被引:94
作者
Potthoff, M
Wegner, T
Nolting, W
机构
[1] Lehrstuhl Festkörpertheorie, Institut für Physik, Humboldt-Universität zu Berlin
关键词
D O I
10.1103/PhysRevB.55.16132
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop an analytical expression for the self-energy of the infinite-dimensional Hubbard model that is correct in a number of different limits. The approach represents a generalization of the iterative perturbation theory to arbitrary fillings. In the weak-coupling regime perturbation theory to second order in the interaction U is recovered. The theory is exact in the atomic limit. The high-energy behavior of the self-energy up to order 1/E-2 and thereby the first four moments of the spectral density are reproduced correctly. Referring to a standard strong-coupling moment method, we analyze the limit U-->infinity. Different modifications of the approach are discussed and tested by comparing with the results of an exact diagonalization study.
引用
收藏
页码:16132 / 16142
页数:11
相关论文
共 52 条
[1]   SUPERCONDUCTIVITY IN THE 2-DIMENSIONAL HUBBARD-MODEL [J].
BEENEN, J ;
EDWARDS, DM .
PHYSICAL REVIEW B, 1995, 52 (18) :13636-13651
[2]   PERTURBATIONAL TREATMENT OF CORRELATION-EFFECTS IN THE HUBBARD-MODEL [J].
BULK, G ;
JELITTO, RJ .
PHYSICAL REVIEW B, 1990, 41 (01) :413-427
[3]   ELECTRONIC-PROPERTIES OF THE INSULATING HALF-FILLED HUBBARD-MODEL [J].
BULUT, N ;
SCALAPINO, DJ ;
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1994, 73 (05) :748-751
[4]   QUASI-PARTICLE DISPERSION IN THE CUPRATE SUPERCONDUCTORS AND THE 2-DIMENSIONAL HUBBARD-MODEL [J].
BULUT, N ;
SCALAPINO, DJ ;
WHITE, SR .
PHYSICAL REVIEW B, 1994, 50 (10) :7215-7218
[5]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[6]  
DERKELLEN SB, 1990, PHYS REV B, V42, P447
[7]  
Fetter A. L., 1971, Quantum Theory of Many-particle Systems
[8]   FERROMAGNETISM IN THE STRONGLY CORRELATED HUBBARD-MODEL [J].
GEIPEL, G ;
NOLTING, W .
PHYSICAL REVIEW B, 1988, 38 (04) :2608-2621
[9]   PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW B, 1993, 48 (10) :7167-7182
[10]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243