Zoom lens design for a novel imaging spectrometer that controls spatial and spectral resolution individually

被引:8
作者
Choi, Jin [1 ]
Kim, T. H.
Kong, H. J.
Lee, Jong Ung
机构
[1] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Image Informat Res Ctr, Taejon 305701, South Korea
[3] Chongju Univ, Dept Opt Engn, Chonju 360764, South Korea
关键词
D O I
10.1364/AO.45.003430
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel imaging spectrometer can individually control spatial and spectral resolution by using zoom lenses as the foreoptics of the system and a focusing lens. By varying the focal length we can use the focusing lens to change the spatial and spectral dimensions; with the foreoptics, however, we can change only the spatial dimension. Therefore the spectral resolution and the spectral range are affected by the zoom ratio of the focusing lens, whereas the spatial resolution and the field of view are affected by the multiplication of the zoom ratios of the foreoptics and the focusing lens. By properly combining two zoom ratios, we can control the spectral resolution with a fixed spatial resolution or the spatial resolution with a fixed spectral resolution. For an imaging spectrometer with this novel zooming function, we used the lens module method and third-order aberration theory to design an initial four-group zoom system with an external entrance pupil for the focusing lens. Furthermore, using the optical design software CODE V, we obtained an optimized zoom lens with a focal-length range of 50 to 150 mm. Finally, the zoom system with its transmission grating in the Littrow configuration performs satisfactorily as the focusing lens of an imaging spectrometer in the wavelength range 450-900 nm. (c) 2006 Optical Society of America.
引用
收藏
页码:3430 / 3441
页数:12
相关论文
共 30 条
[1]   The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere [J].
Barnsley, MJ ;
Settle, JJ ;
Cutter, MA ;
Lobb, DR ;
Teston, F .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (07) :1512-1520
[2]   Ocean PHILLS hyperspectral imager: design, characterization, and calibration [J].
Davis, CO ;
Bowles, J ;
Leathers, RA ;
Korwan, D ;
Downes, TV ;
Snyder, WA ;
Rhea, WJ ;
Chen, W ;
Fisher, J ;
Bissett, WP ;
Reisse, RA .
OPTICS EXPRESS, 2002, 10 (04) :210-221
[3]   Demonstration of a high-speed nonscanning imaging spectrometer [J].
Descour, MR ;
Volin, CE ;
Dereniak, EL ;
Thome, KJ ;
Schumacher, AB ;
Wilson, DW ;
Maker, PD .
OPTICS LETTERS, 1997, 22 (16) :1271-1273
[4]   A novel zoom-lens spectrograph for a small astronomical telescope [J].
Elliott, KH .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1996, 281 (01) :158-162
[5]   DESIGN AND MODELING OF A COMPACT IMAGING SPECTROMETER [J].
FENG, C ;
AHMAD, A .
OPTICAL ENGINEERING, 1995, 34 (11) :3217-3221
[6]   Comparison of low-cost hyperspectral sensors [J].
Fisher, J ;
Baumback, M ;
Bowles, J ;
Grossmann, J ;
Antoniades, J .
IMAGING SPECTROMETRY IV, 1998, 3438 :23-30
[7]   OPTICAL REMOTE-SENSING OF THE EARTH [J].
GOETZ, AFH ;
WELLMAN, JB ;
BARNES, WL .
PROCEEDINGS OF THE IEEE, 1985, 73 (06) :950-969
[8]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153
[9]   Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [J].
Green, RO ;
Eastwood, ML ;
Sarture, CM ;
Chrien, TG ;
Aronsson, M ;
Chippendale, BJ ;
Faust, JA ;
Pavri, BE ;
Chovit, CJ ;
Solis, MS ;
Olah, MR ;
Williams, O .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :227-248
[10]   SYSTEMATIC DESIGN OF 2-COMPONENT OBJECTIVES [J].
HOPKINS, HH ;
VENKATES.V .
OPTICA ACTA, 1970, 17 (07) :497-&