Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature

被引:100
作者
Conti, Monica [1 ]
Pata, Vittorino [1 ]
Quintanilla, Ramon [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[2] Univ Politecn Cataluna, Dept Matemat, C Colom 11, Barcelona 08222, Spain
关键词
Moore-Gibson-Thompson equation; relaxation parameter; memory kernel; thermoelasticity; solution semigroup; exponential stability; EXPONENTIAL STABILITY; STRUCTURAL STABILITY; III THERMOELASTICITY; EQUATION; MEMORY; DECAY; VISCOELASTICITY; CONVERGENCE; WAVES; MEDIA;
D O I
10.3233/ASY-191576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a thermoelastic model where heat conduction is described by the history dependent version of the Moore-Gibson-Thompson equation, arising via the introduction of a relaxation parameter in the Green-Naghdi type III theory. The well-posedness of the resulting integro-differential system is discussed. In the one-dimensional case, the exponential decay of the energy is proved.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
[1]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[2]  
Chandrasekharaiah DS., 1998, APPL MECH REV, V51, P705, DOI DOI 10.1115/1.3098984
[3]  
Conejero JA., 2015, APPL MATH INFORM SCI, V9, P2233
[4]   Weakly dissipative semilinear equations of viscoelasticity [J].
Conti, M ;
Pata, V .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (04) :705-720
[5]   On a Caginalp Phase-Field System with Two Temperatures and Memory [J].
Conti, M. ;
Gatti, S. ;
Miranville, A. ;
Quintanilla, R. .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (01) :1-27
[6]   Uniform decay properties of linear Volterra integro-differential equations [J].
Conti, Monica ;
Gatti, Stefania ;
Pata, Vittorino .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (01) :21-45
[7]   A MODEL OF VISCOELASTICITY WITH TIME-DEPENDENT MEMORY KERNELS [J].
Conti, Monica ;
Danese, Valeria ;
Giorgi, Claudio ;
Pata, Vittorino .
AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) :349-389
[8]   SEMILINEAR WAVE EQUATIONS OF VISCOELASTICITY IN THE MINIMAL STATE FRAMEWORK [J].
Conti, Monica ;
Marchini, Elsa M. ;
Pata, Vittorino .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) :1535-1552
[9]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[10]   AN ABSTRACT VOLTERRA EQUATION WITH APPLICATIONS TO LINEAR VISCOELASTICITY [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 7 (03) :554-&