A LOCAL CONSERVATIVE MULTISCALE METHOD FOR ELLIPTIC PROBLEMS WITH OSCILLATING COEFFICIENTS

被引:2
作者
Jeon, Youngmok [1 ]
Park, Eun-Jae [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 16499, South Korea
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
cell boundary element; homogenization; variational multiscale; multiscale finite element; hybridization; mass conservation; FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHOD;
D O I
10.12941/jksiam.2020.24.215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new multiscale finite element method for elliptic problems with highly oscillating coefficients are introduced. A hybridization yields a locally flux-conserving numerical scheme for multiscale problems. Our approach naturally induces a homogenized equation which facilitates error analysis. Complete convergence analysis is given and numerical examples are presented to validate our analysis.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 31 条
[1]   Finite difference heterogeneous multi-scale method for homogenization problems [J].
Abdulle, A ;
Weinan, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 191 (01) :18-39
[2]   Multiscale finite element method for numerical homogenization [J].
Allaire, G ;
Brizzi, R .
MULTISCALE MODELING & SIMULATION, 2005, 4 (03) :790-812
[3]   A multiscale mortar mixed finite element method [J].
Arbogast, Todd ;
Pencheva, Gergina ;
Wheeler, Mary F. ;
Yotov, Ivan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (01) :319-346
[4]   HOMOGENIZATION-BASED MIXED MULTISCALE FINITE ELEMENTS FOR PROBLEMS WITH ANISOTROPY [J].
Arbogast, Todd .
MULTISCALE MODELING & SIMULATION, 2011, 9 (02) :624-653
[5]   Analysis of multiscale mortar mixed approximation of nonlinear elliptic equations [J].
Arshad, Muhammad ;
Park, Eun-Jae ;
Shin, Dong-wook .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) :401-418
[6]  
Bensoussan A., 1978, Stud. Math. Appl.
[7]  
Brezzi F, 2000, CH CRC RES NOTES, V420, P69
[8]  
Chen ZM, 2003, MATH COMPUT, V72, P541, DOI 10.1090/S0025-5718-02-01441-2
[9]   CONVERGENCE OF THE HETEROGENEOUS MULTISCALE FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH NONSMOOTH MICROSTRUCTURES [J].
Du, Rui ;
Ming, Pingbing .
MULTISCALE MODELING & SIMULATION, 2010, 8 (05) :1770-1783
[10]  
EFENDIEV Y, 2009, SURVEYS TUTORIALS AP, V45