The Modified Korteweg-de Vries Equation on the Half-Line with a Sine-Wave as Dirichlet Datum

被引:18
作者
Hwang, Guenbo [1 ]
Fokas, A. S. [2 ]
机构
[1] Daegu Univ, Dept Math, Gyeonsan 712714, Gyeongbuk, South Korea
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
Initial-boundary value problem; Generalized Dirichlet to Neumann map; modified Korteweg-de Vries equation; STEEPEST DESCENT METHOD;
D O I
10.1080/14029251.2013.792492
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundary value problems for integrable nonlinear evolution PDEs, like the modified KdV equation, formulated on the half-line can be analyzed by the so-called unified transform method. For the modified KdV equation, this method yields the solution in terms of the solution of a matrix Riemann-Hilbert problem uniquely determined in terms of the initial datum q(x,0), as well as of the boundary values {q(0,t), q(x)(0,t), q(xx)(0,t)}. For the Dirichlet problem, it is necessary to characterize the unknown boundary values q(x)(0,t) and q(xx)(0,t) in terms of the given data q(x,0) and q(0,t). It is shown here that in the particular case of a vanishing initial datum and of a sine wave as Dirichlet datum, q(x)(0, t) and q(xx)(0,t) can be computed explicitly at least up to third order in a perturbative expansion and that at least up to this order, these functions are asymptotically periodic for large t.
引用
收藏
页码:135 / 157
页数:23
相关论文
共 18 条
[1]   Analysis of the global relation for the nonlinear Schrödinger equation on the half-line [J].
A. Boutet de Monvel ;
A. S. Fokas ;
D. Shepelsky .
Letters in Mathematical Physics, 2003, 65 (3) :199-212
[2]   Long-time asymptotics for the focusing NLS equation with time-periodic boundary condition [J].
de Monvel, Anne Boutet ;
Its, Alexander ;
Kotlyarov, Vladimir .
COMPTES RENDUS MATHEMATIQUE, 2007, 345 (11) :615-620
[3]   Initial boundary value problems for integrable systems: towards the long time asymptotics [J].
de Monvel, Anne Boutet ;
Kotlyarov, Vladimir P. ;
Shepelsky, Dmitry ;
Zheng, Chunxiong .
NONLINEARITY, 2010, 23 (10) :2483-2499
[4]   Long-Time Asymptotics for the Focusing NLS Equation with Time-Periodic Boundary Condition on the Half-Line [J].
de Monvel, Anne Boutet ;
Its, Alexander ;
Kotlyarov, Vladimir .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (02) :479-522
[5]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS [J].
DEIFT, P ;
ZHOU, X .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (01) :119-123
[6]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[7]  
Deift P, 1997, INT MATH RES NOTICES, V1997, P285
[8]   THE COLLISIONLESS SHOCK REGION FOR THE LONG-TIME BEHAVIOR OF SOLUTIONS OF THE KDV EQUATION [J].
DEIFT, P ;
VENAKIDES, S ;
ZHOU, X .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :199-206
[9]   Synthesis, as Opposed to Separation, of Variables [J].
Fokas, A. S. ;
Spence, E. A. .
SIAM REVIEW, 2012, 54 (02) :291-324
[10]   The unified method: I. Nonlinearizable problems on the half-line [J].
Fokas, A. S. ;
Lenells, J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)