Quantum Lyapunov exponents

被引:2
作者
Falsaperla, P
Fonte, G
Salesi, G
机构
[1] Univ Catania, Dipartimento Fis & Astron, I-95129 Catania, Italy
[2] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy
[3] Univ Statale Bergamo, Fac Ingn, I-24044 Dalmine, BG, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
关键词
quantum Lyapunov exponents;
D O I
10.1023/A:1014413310636
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that it is possible to associate univocally with each given solution of the time-dependent Schrodinger equation a particular phase flow ("quantum flow") of a non-autonomous dynamical system. This fact allows us to introduce a definition of chaos in quantum dynamics (quantum chaos), which is based on the classical theory of chaos in dynamical systems. In such a way we can introduce quantities which may be appelled quantum Lyapunov exponents. Our approach applies to a non-relativistic quantum-mechanical system of n charged particles; in the present work numerical calculations are performed only for the hydrogen atom. In the computation of the trajectories we first neglect the spin contribution to chaos, then the consider the spin effects in quantum chaos. We show how the quantum Lyapunov exponents can be evaluated and give several numerical results which describe some properties found in the present approach. Although the system is very simple and the classical counterpart is regular, the most non-stationary solutions of the corresponding Schrodinger equation are chaotic according to our definition.
引用
收藏
页码:267 / 294
页数:28
相关论文
共 47 条
[1]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[2]  
[Anonymous], THEORIE GEN PARTICUL
[3]  
ARNOLD VI, 1979, EQUAZIONI DIFFERNZIA
[4]  
Atkinson K. E., 1989, INTRO NUMERICAL ANAL
[5]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[6]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[7]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[8]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673
[9]  
de Broglie L, 1926, CR HEBD ACAD SCI, V183, P447
[10]  
de Broglie L., 1960, Nonlinear Wave Mechanics