A priori bounds for the positive solutions of super-linear indefinite weighted elliptic problems

被引:0
作者
Cano-Casanova, S [1 ]
机构
[1] Univ Pontificia Comillas Madrid, Dept Matemat Aplicada & Comp, Madrid 28015, Spain
来源
FIRST 60 YEARS OF NONLINEAR ANALYSIS OF JEAN MAWHIN | 2004年
关键词
D O I
10.1142/9789812702906_0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work are given sufficient conditions on the nonlinearity and on certain potentials of a very general class of superlinear indefinite weighted elliptic problems of mixed type, to get uniform a priori bounds for their positive solutions. To perform our results, we adapt to our more general setting some of the rescaling arguments and Liouville type theorems used previously by H. Amann and J. Lopez-Gomez in Sec.4 of [1]. Monotonicity methods, rescaling arguments and Liouville type theorems are among the main technical tools used to carry out our analysis.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
[31]   Existence of positive solutions for a class of indefinite elliptic problems in RN [J].
Costa, DG ;
Tehrani, H .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (02) :159-189
[32]   Positive solutions of reaction diffusion equations with super-linear absorption: Universal bounds, uniqueness for the Cauchy problem, boundedness of stationary solutions [J].
Pinsky, RG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 220 (02) :407-433
[33]   Positive periodic solutions to super-linear second-order ODEs [J].
Sremr, Jiri .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2025, 75 (01) :257-275
[34]   BOUNDS FOR POSITIVE SINGULAR SOLUTIONS OF LINEAR ELLIPTIC EQUATIONS [J].
PEDERSON, RN .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 20 :305-&
[35]   A PRIORI BOUNDS AND POSITIVE SOLUTIONS FOR NON-VARIATIONAL FRACTIONAL ELLIPTIC SYSTEMS [J].
Ferreira Leite, Edir Junior ;
Montenegro, Marcos .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2017, 30 (11-12) :947-974
[36]   SUPER-LINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
HESS, P ;
RUF, B .
MATHEMATISCHE ZEITSCHRIFT, 1978, 164 (01) :9-14
[37]   Weighted a priori bounds for elliptic operators of Cordes type [J].
Loredana Caso ;
Roberta D’Ambrosio ;
Maria Transirico .
Journal of Inequalities and Applications, 2015
[38]   Weighted a priori bounds for elliptic operators of Cordes type [J].
Caso, Loredana ;
D'Ambrosio, Roberta ;
Transirico, Maria .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[39]   A PRIORI BOUNDS FOR ELLIPTIC OPERATORS IN WEIGHTED SOBOLEV SPACES [J].
Boccia, Serena ;
Salvato, Maria ;
Transirico, Maria .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02) :307-318
[40]   POSITIVE SOLUTIONS OF INDEFINITE SEMIPOSITONE PROBLEMS VIA SUB-SUPER SOLUTIONS [J].
Kaufmann, Uriel ;
Ramos Quoirin, Humberto .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (7-8) :497-506