A new time series prediction method based on complex network theory

被引:0
作者
Wang, Minggang [1 ,2 ,3 ,4 ]
Vilela, Andre L. M. [2 ,3 ,5 ]
Tian, Lixin [1 ,6 ]
Xu, Hua [4 ]
Du, Ruijin [2 ,3 ,6 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210042, Jiangsu, Peoples R China
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
[4] Nanjing Normal Univ, Dept Math, Taizhou Coll, Taizhou 225300, Peoples R China
[5] Univ Pernambuco, BR-50720001 Recife, PE, Brazil
[6] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2017年
基金
中国国家自然科学基金;
关键词
time series; complex networks; predictive model;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a new time series prediction method based on complex network theory, named Data Fluctuation Networks Predictive Model (DFNPM). The basic idea of the method is: to first map the time series into data networks and extract fluctuation features of time series accordingly to the topological structure of the data networks, and then construct models with useful information extracted to predict time series. We compare our model with the traditional prediction models as Grey Prediction Model (GM), Exponential Smoothing Model (ESM), Autoregressive Integrated Moving Average Model (ARIMA) and Radial Basis Function Neural Network (RBF) using crude oil and gasoline future prices. We obtained that the accuracy of DFNPM is higher than that previously cited models.
引用
收藏
页码:4170 / 4175
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2002, ECONOMET REV, DOI [10.1081/ETC-120008723, DOI 10.1081/ETC-120008723]
[2]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[3]  
Box George, 1970, Time Series Analysis: Forecasting and Control, DOI DOI 10.1080/01621459.1970.10481180
[4]   SOME RECENT DEVELOPMENTS IN NONLINEAR TIME-SERIES MODELING, TESTING, AND FORECASTING [J].
DEGOOIJER, JG ;
KUMAR, K .
INTERNATIONAL JOURNAL OF FORECASTING, 1992, 8 (02) :135-156
[5]  
Kac M., 1947, The American Mathematical Monthly, V54, P369, DOI [10.2307/2304386, 10.1080/00029890.1947.11990189, DOI 10.1080/00029890.1947.11990189]
[6]   From time series to complex networks:: The visibility graph [J].
Lacasa, Lucas ;
Luque, Bartolo ;
Ballesteros, Fernando ;
Luque, Jordi ;
Nuno, Juan Carlos .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :4972-4975
[7]   Link prediction in complex networks: A survey [J].
Lue, Linyuan ;
Zhou, Tao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (06) :1150-1170
[8]   ACCURACY MEASURES - THEORETICAL AND PRACTICAL CONCERNS [J].
MAKRIDAKIS, S .
INTERNATIONAL JOURNAL OF FORECASTING, 1993, 9 (04) :527-529
[9]  
Mika S., 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), P41, DOI 10.1109/NNSP.1999.788121
[10]   Fast Learning in Networks of Locally-Tuned Processing Units [J].
Moody, John ;
Darken, Christian J. .
NEURAL COMPUTATION, 1989, 1 (02) :281-294