On a Boundary Value Problem for a Higher-Order Elliptic Equation

被引:6
作者
Malakhova, N. A. [1 ]
Soldatov, A. P.
机构
[1] Belgorod State Univ, Belgorod, Russia
基金
俄罗斯基础研究基金会;
关键词
Dirichlet Problem; Singular Integral Equation; Neumann Problem; Normal Derivative; Unit Tangent Vector;
D O I
10.1134/S0012266108080089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an elliptic 2lth-order equation with constant (and only leading) real coefficients, we consider the boundary value problem in which the (k(j) - 1)st normal derivatives, j = 1,..., l, are specified, where 1 <= k(1) < ... < k(l). If k(j) = j, then it becomes the Dirichlet problem; and if k(j) = j + 1, then it becomes the Neumann problem. We obtain a sufficient condition for this problem to be Fredholm and present a formula for the index of the problem.
引用
收藏
页码:1111 / 1118
页数:8
相关论文
共 6 条
[1]  
BITSADZE AV, 1988, DIFF URAVN, V24, P825
[2]  
DEZIN AA, 1954, DOKL AKAD NAUK SSSR, V96, P901
[3]  
Gakhov FD., 1977, BOUND VALUE PROBL
[4]  
Muskhelishvili NI., 1968, SINGULAR INTEGRAL EQ
[5]  
SOLDATOV AP, 1991, IZV AKAD NAUK SSSR M, V55, P1070
[6]  
SOLDATOV AP, 1989, DIFF URAVN, V25, P136