Atomistic mechanisms of fatigue in nanotwinned metals

被引:51
作者
Zhou, Xiaoling [1 ]
Li, Xiaoyan [1 ,2 ]
Chen, Changqing [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Adv Mech & Mat, Beijing 100084, Peoples R China
[3] Tsinghua Univ, CNMM, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Fatigue crack; Nanoscale twins; Dislocation; Detwinning; Atomistic simulation; ULTRAHIGH-STRENGTH; MAXIMUM STRENGTH; DEFORMATION; ALUMINUM;
D O I
10.1016/j.actamat.2015.07.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the fatigue behavior of nanotwinned Cu using a combination of molecular statics and molecular dynamics simulations. The presence of nanoscale twins is found to enhance fatigue crack growth resistance. For the twin-free nanocrystalline samples, the fatigue crack propagates by linking the nanovoids that are formed ahead of the crack tip. In the case of the nanotwinned samples, however, it advances as the crack tip alternately blunts and re-sharpens due to dislocation emission and slip. Both detwinning and crack closure are observed in the path of the fatigue crack in nanotwinned samples with a high density of twin boundaries. As the twin number per grain (quantified by the ratio of the mean grain size to the twin boundary spacing d/lambda) increases, detwinning increases the dissipated energy of fatigue cracking, leading to enhanced fatigue resistance. The atomistic simulations show that fatigue crack growth in nanotwinned Cu conforms to Paris' law. In conjunction with the experimental results, we obtain a quantitative estimation of the Paris' law exponent (similar to 4.0), which is in agreement with the theoretical predictions from the damage accumulation model. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:77 / 86
页数:10
相关论文
共 37 条
[1]   Epitaxial nanotwinned Cu films with high strength and high conductivity [J].
Anderoglu, O. ;
Misra, A. ;
Wang, H. ;
Ronning, F. ;
Hundley, M. F. ;
Zhang, X. .
APPLIED PHYSICS LETTERS, 2008, 93 (08)
[2]  
Burek MJ, 2010, NANO LETT, V10, P69, DOI [10.1021/nl902872W, 10.1021/nl902872w]
[3]   Structure Modulation Driven by Cyclic Deformation in Nanocrystalline NiFe [J].
Cheng, Sheng ;
Zhao, Yonghao ;
Wang, Yinmin ;
Li, Ying ;
Wang, Xun-Li ;
Liaw, Peter K. ;
Lavernia, Enrique J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[4]   Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures [J].
Deng, Chuang ;
Sansoz, Frederic .
PHYSICAL REVIEW B, 2010, 81 (15)
[5]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[6]   Atomistic mechanisms of fatigue in nanocrystalline metals [J].
Farkas, D ;
Willemann, M ;
Hyde, B .
PHYSICAL REVIEW LETTERS, 2005, 94 (16)
[7]   FATIGUE CRACK-GROWTH UNDER COMPRESSIVE LOADING [J].
FLECK, NA ;
SHIN, CS ;
SMITH, RA .
ENGINEERING FRACTURE MECHANICS, 1985, 21 (01) :173-+
[8]   Grain size effects on the fatigue response of nanocrystalline metals [J].
Hanlon, T ;
Kwon, YN ;
Suresh, S .
SCRIPTA MATERIALIA, 2003, 49 (07) :675-680
[9]   Twin stability in highly nanotwinned Cu under compression, torsion and tension [J].
Hodge, A. M. ;
Furnish, T. A. ;
Shute, C. J. ;
Liao, Y. ;
Huang, X. ;
Hong, C. S. ;
Zhu, Y. T. ;
Barbee, T. W., Jr. ;
Weertman, J. R. .
SCRIPTA MATERIALIA, 2012, 66 (11) :872-877
[10]   Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue [J].
Horstemeyer, M. F. ;
Farkas, D. ;
Kim, S. ;
Tang, T. ;
Potirniche, G. .
INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (09) :1473-1502