Evaluation of Measurement Uncertainties in Human Diffusion Tensor Imaging (DTI)-Derived Parameters and Optimization of Clinical DTI Protocols With a Wild Bootstrap Analysis

被引:29
|
作者
Zhu, Tong [2 ]
Liu, Xiaoxu [3 ]
Gaugh, Michelle D. [4 ]
Connelly, Patrick R. [2 ]
Ni, Hongyan [1 ]
Ekholm, Sven [1 ]
Schifitto, Giovanni [4 ]
Zhong, Jianhui [1 ,2 ]
机构
[1] Univ Rochester, Dept Imaging Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Neurol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging; measurement uncertainty; wild bootstrap analysis; Monte Carlo simulation; DTI protocol selection; WHITE-MATTER; HUMAN BRAIN; FRACTIONAL ANISOTROPY; FIBER-ORIENTATION; SPIN-ECHO; MRI; SCHEMES; IMAGES; NOISE; EPI;
D O I
10.1002/jmri.21647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions. Materials and Methods: A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters-the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion-weighted (DW) images to the total number of non-DW images (DTIR)-were analyzed in order to investigate their combined effects on uncertainties of DTI-derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data. Results: The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error-propagations as well as results from simulations. Conclusion: Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non-DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 44 条
  • [31] Preferential Detachment During Human Brain Development: Age- and Sex-Specific Structural Connectivity in Diffusion Tensor Imaging (DTI) Data
    Lim, Sol
    Han, Cheol E.
    Uhlhaas, Peter J.
    Kaiser, Marcus
    CEREBRAL CORTEX, 2015, 25 (06) : 1477 - 1489
  • [32] Impact of blood flow on diffusion coefficients of the human kidney: A time-resolved ECG-triggered diffusion-tensor imaging (DTI) study at 3T
    Heusch, Philipp
    Wittsack, Hans-Joerg
    Kroepil, Patric
    Blondin, Dirk
    Quentin, Michael
    Klasen, Janina
    Pentang, Gael
    Antoch, Gerald
    Lanzman, Rotem S.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 37 (01) : 233 - 236
  • [33] Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases
    Taoka, Toshiaki
    Masutani, Yoshitaka
    Kawai, Hisashi
    Nakane, Toshiki
    Matsuoka, Kiwamu
    Yasuno, Fumihiko
    Kishimoto, Toshifumi
    Naganawa, Shinji
    JAPANESE JOURNAL OF RADIOLOGY, 2017, 35 (04) : 172 - 178
  • [34] Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases
    Toshiaki Taoka
    Yoshitaka Masutani
    Hisashi Kawai
    Toshiki Nakane
    Kiwamu Matsuoka
    Fumihiko Yasuno
    Toshifumi Kishimoto
    Shinji Naganawa
    Japanese Journal of Radiology, 2017, 35 : 172 - 178
  • [35] Diffusion tensor imaging (DTI) Analysis Based on Tract-based spatial statistics (TBSS) and Classification Using Multi-Metric in Alzheimer's Disease
    Zhang, Yingteng
    Zhan, Feibiao
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2023, 22 (04)
  • [36] Quantitative assessment of changes in diffusion tensor imaging (DTI) metrics along the courses of the cortico-ponto-cerebellar tracts secondary to supratentorial human brain glial tumors
    Mirbagheri, Saeedeh
    Kamali, Arash
    Cai, Chunyan
    Kasaie, Parastu
    Pillai, Jay Jan
    Gujar, Sachin Krishnakant
    Khorsandi, Azita
    Sair, Haris Iqbal
    CANCER REPORTS, 2018, 1 (02)
  • [37] Diffusion tensor magnetic resonance imaging of the normal breast: reproducibility of DTI-derived fractional anisotropy and apparent diffusion coefficient at 3.0 TL’imaging con tensore di diffusione nello studio della mammella normale: riproducibilità dell’anisotropia frazionaria derivante dalla DTI e dal coefficiente apparente di diffusione con una risonanza magnetica da 3.0 T
    A. Tagliafico
    G. Rescinito
    F. Monetti
    A. Villa
    F. Chiesa
    E. Fisci
    D. Pace
    M. Calabrese
    La radiologia medica, 2012, 117 (6) : 992 - 1003
  • [38] Sixto Obrador SENEC prize 2019: Utility of diffusion tensor imaging as a prognostic tool in moderate to severe traumatic brain injury. Part I. Analysis of DTI metrics performed during the early subacute stage
    Castano-Leon, Ana M.
    Cicuendez, Marta
    Navarro-Main, Blanca
    Munarriz, Pablo M.
    Paredes, Igor
    Cepeda, Santiago
    Hilario, Amaya
    Ramos, Ana
    Gomez, Pedro A.
    Lagares, Alfonso
    NEUROCIRUGIA, 2020, 31 (03): : 132 - 145
  • [39] Quantitative Evaluation of the Diffusion Tensor Imaging Matrix Parameters and the Subsequent Correlation with the Clinical Assessment of Disease Severity in Cervical Spondylotic Myelopathy
    Nischal, Neha
    Tripathi, Shalini
    Singh, Jatinder Pal
    ASIAN SPINE JOURNAL, 2021, 15 (06) : 808 - 816
  • [40] Coupling analysis of diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) with abnormal cerebral blood flow in methamphetamine-dependent patients and its application in machine-learning-based classification
    Cheng, Ping
    Li, Yadi
    Wang, Shuyuan
    Liang, Liang
    Zhang, Mingyu
    Liu, Huifen
    Shen, Wenwen
    Zhou, Wenhua
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 376 : 463 - 472