Evaluation of Measurement Uncertainties in Human Diffusion Tensor Imaging (DTI)-Derived Parameters and Optimization of Clinical DTI Protocols With a Wild Bootstrap Analysis

被引:29
|
作者
Zhu, Tong [2 ]
Liu, Xiaoxu [3 ]
Gaugh, Michelle D. [4 ]
Connelly, Patrick R. [2 ]
Ni, Hongyan [1 ]
Ekholm, Sven [1 ]
Schifitto, Giovanni [4 ]
Zhong, Jianhui [1 ,2 ]
机构
[1] Univ Rochester, Dept Imaging Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Neurol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging; measurement uncertainty; wild bootstrap analysis; Monte Carlo simulation; DTI protocol selection; WHITE-MATTER; HUMAN BRAIN; FRACTIONAL ANISOTROPY; FIBER-ORIENTATION; SPIN-ECHO; MRI; SCHEMES; IMAGES; NOISE; EPI;
D O I
10.1002/jmri.21647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions. Materials and Methods: A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters-the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion-weighted (DW) images to the total number of non-DW images (DTIR)-were analyzed in order to investigate their combined effects on uncertainties of DTI-derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data. Results: The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error-propagations as well as results from simulations. Conclusion: Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non-DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 44 条
  • [1] An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain
    Zhu, Tong
    Liu, Xiaoxu
    Connelly, Patrick R.
    Zhong, Jianhui
    NEUROIMAGE, 2008, 40 (03) : 1144 - 1156
  • [2] Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation
    Sidek, S.
    Ramli, N.
    Rahmat, K.
    Ramli, N. M.
    Abdulrahman, F.
    Tan, L. K.
    EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (08) : 1437 - 1441
  • [3] The reproducibility of measurements using a standardization phantom for the evaluation of fractional anisotropy (FA) derived from diffusion tensor imaging (DTI)
    Kimura, Mitsuhiro
    Yabuuchi, Hidetake
    Matsumoto, Ryoji
    Kobayashi, Koji
    Yamashita, Yasuo
    Nagatomo, Kazuya
    Mikayama, Ryoji
    Kamitani, Takeshi
    Sagiyama, Koji
    Yamasaki, Yuzo
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (02) : 293 - 298
  • [4] Diffusion tensor imaging (DTI) of human lower leg muscles: correlation between DTI parameters and muscle power with different ankle positions
    Shoichiro Takao
    Maho Kaneda
    Mihoko Sasahara
    Suzuka Takayama
    Yoshitaka Matsumura
    Tetsuya Okahisa
    Tsuyoshi Goto
    Nori Sato
    Shinsuke Katoh
    Masafumi Harada
    Junji Ueno
    Japanese Journal of Radiology, 2022, 40 : 939 - 948
  • [5] Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders
    Lee, Jae-Seung
    Im, In-Chul
    Kang, Su-Man
    Goo, Eun-Hoe
    Kwak, Byung-Joon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (01) : 83 - 88
  • [6] Diffusion Tensor Imaging (DTI) of the Normal Hum Uterus In Vivo at 3 Tesla: Comparison of DTI parameters in the Different Uterine Layers
    Fujimoto, Koji
    Kido, Aki
    Okada, Tomohisa
    Uchikoshi, Masato
    Togashi, Kaori
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (06) : 1494 - 1500
  • [7] Diffusion Tensor Imaging (DTI) of the Kidney at 3 Tesla-Feasibility, Protocol Evaluation and Comparison to 1.5 Tesla
    Notohamiprodjo, Mike
    Dietrich, Olaf
    Horger, Wihelm
    Horng, Annie
    Helck, Andreas D.
    Herrmann, Karin A.
    Reiser, Maximilian F.
    Glaser, Christian
    INVESTIGATIVE RADIOLOGY, 2010, 45 (05) : 245 - 254
  • [8] Diffusion Tensor Imaging (DTI) and its clinical correlates in drug naïve Wilson’s disease
    Rakesh Jadav
    Jitender Saini
    Sanjib Sinha
    Bhavanishankara Bagepally
    S. Rao
    Arun B. Taly
    Metabolic Brain Disease, 2013, 28 : 455 - 462
  • [9] Diffusion Tensor Imaging (DTI) and its clinical correlates in drug na⟨ve Wilson's disease
    Jadav, Rakesh
    Saini, Jitender
    Sinha, Sanjib
    Bagepally, Bhavanishankara
    Rao, S.
    Taly, Arun B.
    METABOLIC BRAIN DISEASE, 2013, 28 (03) : 455 - 462
  • [10] In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior
    Yamasaki, Tetsuro
    Fujiwara, Hiroyoshi
    Oda, Ryo
    Mikami, Yasuo
    Ikeda, Takumi
    Nagae, Masateru
    Shirai, Toshiharu
    Morisaki, Shinsuke
    Ikoma, Kazuya
    Masugi-Tokita, Miwako
    Yamada, Kei
    Kawata, Mitsuhiro
    Kubo, Toshikazu
    MAGNETIC RESONANCE IMAGING, 2015, 33 (01) : 95 - 101