Exponential Convergence to Time-Periodic Viscosity Solutions in Time-Periodic Hamilton-Jacobi Equations

被引:3
作者
Wang, Kaizhi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamilton-Jacobi equations; Viscosity solutions; Weak KAM theory; DEFINITE LAGRANGIAN SYSTEMS; LAX-OLEINIK SEMIGROUP; MINIMIZING MEASURES; CONNECTING ORBITS; HYPERBOLICITY;
D O I
10.1007/s11401-018-1052-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Cauchy problem of a tune-periodic Hamilton-Jacobi equation on a closed manifold, where the Hamiltonian satisfies the condition: The Aubry set of the corresponding Hamiltonian system consists of one hyperbolic 1-periodic orbit. It is proved that the unique viscosity solution of Cauchy problem converges exponentially fast to a 1-periodic viscosity solution of the Hamilton-Jacobi equation as the time tends to infinity.
引用
收藏
页码:69 / 82
页数:14
相关论文
共 18 条
[1]  
Barreira L, 2007, DISCRETE CONT DYN-A, V18, P187
[2]   Connecting orbits of time dependent Lagrangian systems [J].
Bernard, P .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (05) :1533-+
[3]  
Contreras G., PREPRINT
[4]   Heteroclinic orbits and Peierls set [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10) :1213-1216
[5]   Weak conjugate KAM solutions and Peierls's barriers [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :649-652
[6]   A weak KAM theorem and Mather's theory of Lagrangian systems [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09) :1043-1046
[7]   On convergence of the Lax-Oleinik semi-group [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :267-270
[8]   Hyperbolicity and exponential convergence of the Lax-Oleinik semigroup [J].
Iturriaga, Renato ;
Sanchez-Morgado, Hector .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (05) :1744-1753
[9]  
Lions P. L., 1982, RES NOTES MATH
[10]   Generic properties and problems of minimizing measures of Lagrangian systems [J].
Mane, R .
NONLINEARITY, 1996, 9 (02) :273-310