Simulations of Dynamic Laser/Plasma X-Ray Production

被引:4
作者
Miller, Craig L. [1 ]
Welch, Dale R. [1 ]
Rose, David V. [1 ]
Campbell, Robert B. [2 ]
Oliver, Bryan V. [2 ]
Webb, Timothy J. [2 ]
Flicker, Dawn G. [2 ]
机构
[1] Voss Sci LLC, Albuquerque, NM 87108 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
美国能源部;
关键词
Bremsstrahlung; pulsed-power systems; simulation; TRANSPORT; BEAMS; CELL;
D O I
10.1109/TPS.2012.2195204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Intense laser beams focused onto thin high-atomic-number targets can generate short intense bursts of MeV X-rays from a small area of the target. Such systems are being developed as short-pulse point-projection X-ray sources for imaging high-density objects. Here, large-scale (400-million macroparticles and 15-million grid cells) 3-D particle-in-cell simulations are described that model the dynamic interaction between the laser beam, a blowoff plasma layer, and the solid-density target. The simulations self-consistently treat the nonlinear interaction between the incident laser pulse and the blowoff plasma layer where a relativistic electron beam is generated. This beam propagates into the solid-density high-atomic-number target where MeV bremsstrahlung is generated. The model tracks the generation, propagation, and self-absorption of radiation in the blowoff plasma, target, and beyond. Radiation production (fluence and energy spectrum) is characterized in the simulations as a function transverse target size, laser-injection angle, and laser energy. The simulated X-ray fluence for the case of a 45 degrees-angle-of-incidence 100-J 0.5-ps laser pulse with a 6-mu m FWHM focus produces a peak dose in excess of 0.2 rad from a 10-mu m-thick square gold target, consistent with experimental measurements.
引用
收藏
页码:2658 / 2666
页数:9
相关论文
共 16 条
[1]   Stopping and scattering of relativistic electron beams in dense plasmas and requirements for fast ignition [J].
Atzeni, S. ;
Schiavi, A. ;
Davies, J. R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (01)
[2]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[3]   X-ray imaging techniques on Z using the Z-Beamlet laser [J].
Bennett, GR ;
Landen, OL ;
Adams, RF ;
Porter, JL ;
Ruggles, LE ;
Simpson, WW ;
Wakefield, C .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01) :657-662
[4]  
Berger M., NIST, PML, DOI [10.18434/T48G6X, DOI 10.18434/T48G6X]
[5]   Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography [J].
Edwards, RD ;
Sinclair, MA ;
Goldsack, TJ ;
Krushelnick, K ;
Beg, FN ;
Clark, EL ;
Dangor, AE ;
Najmudin, Z ;
Tatarakis, M ;
Walton, B ;
Zepf, M ;
Ledingham, KWD ;
Spencer, I ;
Norreys, PA ;
Clarke, RJ ;
Kodama, R ;
Toyama, Y ;
Tampo, M .
APPLIED PHYSICS LETTERS, 2002, 80 (12) :2129-2131
[6]   Bremsstrahlung production with high-intensity laser matter interactions and applications [J].
Galy, J. ;
Maucec, M. ;
Hamilton, D. J. ;
Edwards, R. ;
Magill, J. .
NEW JOURNAL OF PHYSICS, 2007, 9
[7]   ITS - THE INTEGRATED TIGER SERIES OF ELECTRON PHOTON TRANSPORT CODES - VERSION 3.0 [J].
HALBLEIB, JA ;
KENSEK, RP ;
VALDEZ, GD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1992, 39 (04) :1025-1030
[8]   Small-angle Coulomb collision model for particle-in-cell simulations [J].
Lemons, Don S. ;
Winske, Dan ;
Daughton, William ;
Albright, Brian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) :1391-1403
[9]   Paraxial gas-cell focusing of relativistic electron beams for radiography [J].
Oliver, BV ;
Short, D ;
Cooper, G ;
McLean, J ;
O'Malley, J .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (02) :704-711
[10]  
Rambo P. K., 2008, C LAS EL QUANT EL LA