Inverse spectral problems for differential equations on the half-line with turning points

被引:12
作者
Freiling, G [1 ]
Yurko, V
机构
[1] Univ Duisburg Gesamthsch, Fachbereich Math, D-47408 Duisburg, Germany
[2] Saratov State Univ, Dept Math, Saratov 410600, Russia
关键词
D O I
10.1006/jdeq.1998.3564
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boundary value problems for second-order differential equations on the half-line having an arbitrary number of turning points are investigated. We establish properties of the spectra, prove an expansion theorem, and study inverse problems of recovering the boundary value problem from given spectral characteristics. For these inverse problems we prove uniqueness theorems and provide a procedure for constructing the solution. (C) 1999 Academic Press.
引用
收藏
页码:419 / 453
页数:35
相关论文
共 24 条
[1]   INVERSE EIGENVALUE PROBLEMS FOR A STURM-LIOUVILLE EQUATION IN IMPEDANCE FORM [J].
ANDERSSON, LE .
INVERSE PROBLEMS, 1988, 4 (04) :929-971
[2]  
[Anonymous], 1985, LINEAR TURNING POINT
[3]  
Bellmann R., 1963, DIFFERENTIAL DIFFERE
[5]  
DAHO K, 1977, P ROY SOC EDINB A, V78, P161, DOI 10.1017/S0308210500009914
[6]  
Dorodnicyn A.A., 1960, AM MATH SOC TRANSL, V16, P1
[7]   CONNECTION FORMULAS FOR 2ND-ORDER DIFFERENTIAL-EQUATIONS WITH A COMPLEX PARAMETER AND HAVING AN ARBITRARY NUMBER OF TURNING-POINTS [J].
EBERHARD, W ;
FREILING, G ;
SCHNEIDER, A .
MATHEMATISCHE NACHRICHTEN, 1994, 165 :205-229
[8]  
Eberhard W., 1992, RESULTS MATH, V21, P24
[9]  
Eberhard W, 1993, ANALYSIS, V13, P301
[10]   Inverse problems for differential equations with turning points [J].
Freiling, G ;
Yurko, V .
INVERSE PROBLEMS, 1997, 13 (05) :1247-1263