A comparative study of monotone nonparametric kernel estimates

被引:16
作者
Dette, H [1 ]
Pilz, K [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
关键词
isotonic regression; order restricted inference; Nadaraya-Watson estimator; local linear regression; Monte Carlo simulation;
D O I
10.1080/00949650412331321061
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a detailed numerical comparison of three monotone nonparametric kernel regression estimates, which isotonize a nonparametric curve estimator. The first estimate is the classical smoothed isotone estimate of Brunk [Brunk, H.D., 1955, Maximum likelihood estimates of monotone parameters. The Annals of Mathematical Statistics , 26, 607-616.]. The second method has recently been proposed by Hall and Huang [Hall, P. and Huang, L.-S., 2001, Nonparametric kernel regression subject to monotonicity constraints. The Annals of Statistics , 29, 624-647.] and modifies the weights of a commonly used kernel estimate such that the resulting estimate is monotone. The third estimate was recently proposed by Dette et al . [Dette, H., Neumeyer, N. and Pilz, K.F., 2003, A simple non-parametric estimator of a monotone regression function. Technical report, Department of Mathematics. Available online at: http://www.ruhr-uni-bochum.de/mathematik3/preprint.htm] and combines density and regression estimation techniques to obtain a monotone curve estimate of the inverse of the isotone regression function. The three concepts are briefly reviewed and their finite sample properties are studied by means of a simulation study. Although all estimates are first-order asymptotically equivalent (provided that the unknown regression function is isotone) some differences for moderate sample sizes are observed.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 22 条
[1]  
Barlow R. E., 1972, STAT INFERENCE ORDER
[2]   ON THE ESTIMATION OF PARAMETERS RESTRICTED BY INEQUALITIES [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :437-454
[3]   MAXIMUM LIKELIHOOD ESTIMATES OF MONOTONE PARAMETERS [J].
BRUNK, HD .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :607-616
[4]   NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION [J].
CHENG, KF ;
LIN, PE .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :223-233
[5]  
CRESSIE NAC, 1984, J ROYAL STAT SOC B, V46, P4404
[6]  
DETTE H, 2003, SIMPLE NONPARAMETRIC
[7]  
Eubank R.L., 1988, SPLINE SMOOTHING NON
[8]  
Fan J., 1996, LOCAL POLYNOMIAL MOD
[9]   THE MONOTONE SMOOTHING OF SCATTERPLOTS [J].
FRIEDMAN, J ;
TIBSHIRANI, R .
TECHNOMETRICS, 1984, 26 (03) :243-250
[10]  
Gijbels I., 2004, 0334 U CATH LOUV I S