Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration

被引:71
作者
Caldeira, K. [1 ]
Myhrvold, N. P. [2 ]
机构
[1] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA
[2] Intellectual Ventures, Bellevue, WA 98005 USA
关键词
climate; carbon dioxide; time; response; radiative forcing; climate model; GCM; CMIP5; CLIMATE; SYSTEM; CMIP5;
D O I
10.1088/1748-9326/8/3/034039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The temperature response of atmosphere-ocean climate models is analyzed based on atmospheric CO2 step-function-change simulations submitted to phase 5 of the Coupled Model Intercomparison Project (CMIP5). From these simulations and a control simulation, we estimate adjusted radiative forcing, the climate feedback parameter, and effective climate system thermal inertia, and we show that these results can be used to predict the temperature response to time-varying CO2 concentrations. We evaluate several kinds of simple mathematical models for the CMIP5 simulation results, including single-and multiple-exponential models and a one-dimensional ocean-diffusion model. All of these functional forms, except the single-exponential model, can produce curves that fit most CMIP5 results quite well for both continuous and step-function CO2-change pathways. Choice of model for any particular application would include consideration of factors such as the number of free parameters to be constrained and the conception of the underlying mechanistic model. Smooth curve fits to the CMIP5 simulation results realize approximately half (range 38%-61%) of equilibrium warming within the first decade after a CO2 concentration increase, but approximately one quarter (range 14%-40%) of equilibrium warming occurs more than a century after the CO2 increase. Following an instantaneous quadrupling of atmospheric CO2, fits to four of the 20 simulation results reach 4 degrees C of warming within the first decade, but fits to three of the 20 simulation results require more than a century to reach 4 degrees C. These results indicate the need to reduce uncertainty in the temporal response of climate models and to consider this uncertainty when evaluating the risks posed by climate change.
引用
收藏
页数:10
相关论文
共 22 条
[1]   Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models [J].
Andrews, Timothy ;
Gregory, Jonathan M. ;
Webb, Mark J. ;
Taylor, Karl E. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[2]  
Box GEP, 1987, Empirical model-building and response surfaces
[3]   EFFECT OF SOLAR RADIATION VARIATIONS ON CLIMATE OF EARTH [J].
BUDYKO, MI .
TELLUS, 1969, 21 (05) :611-&
[4]  
Burnham K.P., 1998, MODEL SELECTION INFE
[5]   Temperature change vs. cumulative radiative forcing as metrics for evaluating climate consequences of energy system choices [J].
Caldeira, Ken ;
Myhrvold, Nathan P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (27) :E1813-E1813
[6]   Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks [J].
Cao, Long ;
Bala, Govindasamy ;
Caldeira, Ken .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (03)
[7]   LOCALLY WEIGHTED REGRESSION - AN APPROACH TO REGRESSION-ANALYSIS BY LOCAL FITTING [J].
CLEVELAND, WS ;
DEVLIN, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (403) :596-610
[8]  
Forster P, 2007, CHANGES ATMOSPHERIC, V100
[9]   Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments [J].
Geoffroy, O. ;
Saint-Martin, D. ;
Olivie, D. J. L. ;
Voldoire, A. ;
Bellon, G. ;
Tyteca, S. .
JOURNAL OF CLIMATE, 2013, 26 (06) :1841-1857
[10]   Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections [J].
Good, Peter ;
Gregory, Jonathan M. ;
Lowe, Jason A. ;
Andrews, Timothy .
CLIMATE DYNAMICS, 2013, 40 (3-4) :1041-1053