Time-averaged Einstein relation and fluctuating diffusivities for the Levy walk

被引:71
作者
Froemberg, D. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
基金
以色列科学基金会;
关键词
ANOMALOUS DIFFUSION;
D O I
10.1103/PhysRevE.87.030104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Levy walk model is a stochastic framework of enhanced diffusion with many applications in physics and biology. Here we investigate the time-averaged mean squared displacement (delta(2)) over bar often used to analyze single particle tracking experiments. The ballistic phase of the motion is nonergodic and we obtain analytical expressions for the fluctuations of (delta(2)) over bar. For enhanced subballistic diffusion we observe numerically apparent ergodicity breaking on long time scales. As observed by Akimoto [Phys. Rev. Lett. 108, 164101 (2012)], deviations of temporal averages delta(2) from the ensemble average < x(2)> depend on the initial preparation of the system, and here we quantify this discrepancy from normal diffusive behavior. Time-averaged response to a bias is considered and the resultant generalized Einstein relations are discussed. DOI: 10.1103/PhysRevE.87.030104
引用
收藏
页数:5
相关论文
共 40 条
[1]   Distributional Response to Biases in Deterministic Superdiffusion [J].
Akimoto, Takuma .
PHYSICAL REVIEW LETTERS, 2012, 108 (16)
[2]   Generalized Einstein relation: A stochastic modeling approach [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1998, 58 (02) :1296-1310
[3]   Levy walks and generalized stochastic collision models [J].
Barkai, E ;
Fleurov, VN .
PHYSICAL REVIEW E, 1997, 56 (06) :6355-6361
[4]   STRANGE KINETICS of single molecules in living cells [J].
Barkai, Eli ;
Garini, Yuval ;
Metzler, Ralf .
PHYSICS TODAY, 2012, 65 (08) :29-35
[5]   Weak ergodicity breaking in the continuous-time random walk [J].
Bel, G ;
Barkai, E .
PHYSICAL REVIEW LETTERS, 2005, 94 (24)
[6]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[7]   Optimal fits of diffusion constants from single-time data points of Brownian trajectories [J].
Boyer, Denis ;
Dean, David S. ;
Mejia-Monasterio, Carlos ;
Oshanin, Gleb .
PHYSICAL REVIEW E, 2012, 86 (06)
[8]   Statistical aging and nonergodicity in the fluorescence of single nanocrystals [J].
Brokmann, X ;
Hermier, JP ;
Messin, G ;
Desbiolles, P ;
Bouchaud, JP ;
Dahan, M .
PHYSICAL REVIEW LETTERS, 2003, 90 (12) :4-120601
[9]   Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors [J].
Bruno, L. ;
Levi, V. ;
Brunstein, M. ;
Desposito, M. A. .
PHYSICAL REVIEW E, 2009, 80 (01)
[10]   Fractional Levy stable motion can model subdiffusive dynamics [J].
Burnecki, Krzysztof ;
Weron, Aleksander .
PHYSICAL REVIEW E, 2010, 82 (02)