A Dirac-type theorem for 3-uniform hypergraphs

被引:157
作者
Rödl, V
Rucinski, A
Szemerédi, E
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] Adam Mickiewicz Univ, Poznan, Poland
[3] Rutgers State Univ, New Brunswick, NJ 08903 USA
关键词
D O I
10.1017/S0963548305007042
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A Hamiltonian cycle in a 3-uniform hypergraph is a cyclic ordering of the vertices in which every three consecutive vertices form an edge. In this paper we prove an approximate and asymptotic version of an analogue of Dirac's celebrated theorem for graphs: for each gamma > 0 there exists no such that every 3-uniform hypergraph on n >= n(0) vertices, in which each pair of vertices belongs to at least (1/2 + gamma)n edges, contains a Hamiltonian cycle.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 19 条
[1]   H-factors in dense graphs [J].
Alon, N ;
Yuster, R .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) :269-282
[2]  
Bermond JC., 1976, Probleme Combinatoire et theorie des graphes, Orsey, V260, P39
[3]  
CHUNG FRK, 1991, RANDOM STRUCT ALGOR, V2, P241
[4]   An algorithmic regularity lemma for hypergraphs [J].
Czygrinow, A ;
Rödl, V .
SIAM JOURNAL ON COMPUTING, 2000, 30 (04) :1041-1066
[5]   Design type problems motivated by database theory [J].
Demetrovics, J ;
Katona, GOH ;
Sali, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 72 (1-2) :149-164
[6]   Extremal problems on set systems [J].
Frankl, P ;
Rödl, V .
RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (02) :131-164
[7]  
HAXELL P, 2005, IN PRESS P 40 ANN IE
[8]  
Janson S, 2000, WIL INT S D
[9]  
Katona GY, 1999, J GRAPH THEOR, V30, P205, DOI 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO
[10]  
2-O