A hybrid methodology for wind tunnel testing of floating offshore wind turbines

被引:49
作者
Belloli, M. [1 ]
Bayati, I [1 ,2 ]
Facchinetti, A. [1 ]
Fontanella, A. [1 ]
Giberti, H. [3 ]
La Mura, F. [3 ]
Taruffi, F. [1 ]
Zasso, A. [1 ]
机构
[1] Politecn Milan, Dept Mech Engn, Via La Masa 1, I-20156 Milan, Italy
[2] Maritime Res Inst Netherlands MARIN, 2 Haasteeg, NL-6708 Wageningen, Netherlands
[3] Univ Pavia, Dipartimento Ingn Ind & Informaz, Via Ferrata 5, I-27100 Pavia, Italy
基金
欧盟地平线“2020”;
关键词
Floating offshore wind turbine; HIL; Wind tunnel; Scale model; Testing; Control; MODEL; VALIDATION; DESIGN;
D O I
10.1016/j.oceaneng.2020.107592
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper is intended to present the authors' know-how about hybrid/hardware-in-the-loop (HIL) wind tunnel testing of floating offshore wind turbines (FOWTs), that was acquired in the last decade through a very intense activity. Numerical codes commonly used within the scientific community to study FOWTs show significant uncertainties with respect to the prediction of some phenomena peculiar of these systems, like the rotorwind dynamic interaction or the coupling between the machine controller and the low-frequency rigid-body motion modes of the platform. A hybrid/HIL methodology was developed by the authors to exploit the unique characteristics of the Politecnico di Milano wind tunnel to collect data useful to improve the existing knowledge about the above mentioned scientific questions.
引用
收藏
页数:15
相关论文
共 49 条
[11]   On the functional design of the DTU10 MW wind turbine scale model of LIFES50+project [J].
Bayati, I. ;
Belloli, M. ;
Bernini, L. ;
Fiore, E. ;
Giberti, H. ;
Zasso, A. .
SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
[12]   Wind tunnel validation of AeroDyn within LIFES50+project: imposed Surge and Pitch tests [J].
Bayati, I. ;
Belloli, M. ;
Bernini, L. ;
Zasso, A. .
SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
[13]   Design of a 6-DoF Robotic Platform for Wind Tunnel Tests of Floating Wind Turbines [J].
Bayati, I ;
Belloli, M. ;
Ferrari, D. ;
Fossati, F. ;
Giberti, H. .
EERA DEEPWIND' 2014, 11TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2014, 53 :313-323
[14]  
Bayati I., 2018, P ASME 2018 37 INT C, V10, DOI DOI 10.1115/OMAE2018-77804
[15]  
Bayati I., 2017, P 36 INT C OC OFFSH, DOI [10.1115/OMAE2017-61763, DOI 10.1115/OMAE2017-61763]
[16]  
Bayati I., 2017, OCEAN RENEWABLE ENER, V10, DOI [10.1115/OMAE2017-61925, DOI 10.1115/OMAE2017-61925]
[17]   Scale model technology for floating offshore wind turbines [J].
Bayati, Ilmas ;
Belloli, Marco ;
Bernini, Luca ;
Giberti, Hermes ;
Zasso, Alberto .
IET RENEWABLE POWER GENERATION, 2017, 11 (09) :1120-1126
[18]   Aerodynamic design methodology for wind tunnel tests of wind turbine rotors [J].
Bayati, Ilmas ;
Belloli, Marco ;
Bernini, Luca ;
Zasso, Alberto .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2017, 167 :217-227
[19]   Validation of a FAST Model of the Statoil-Hywind Demo Floating Wind Turbine [J].
Driscoll, Frederick ;
Jonkman, Jason ;
Robertson, Amy ;
Sirnivas, Senu ;
Skaare, Bjorn ;
Nielsen, Finn Gunnar .
13TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, EERA DEEPWIND'2016, 2016, 94 :3-19
[20]  
Duarte T., SS FITTING THEORY US