On a stratification of the Kontsevich moduli space (M)over-bar0,n(G(2, 4), d) and enumerative geometry

被引:2
作者
Ramirez, Cristina Martinez [1 ,2 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Aarhus Univ, Inst Matmat Fag CTQM, DK-8000 Aarhus, Denmark
关键词
GROMOV-WITTEN INVARIANTS;
D O I
10.1016/j.jpaa.2008.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a particular stratification of the moduli space (M) over bar (0,n)(G(2, 4), d) of stable maps to G(2, 4). As an application we compute the degree of the variety parametrizing rational ruled surfaces with a minimal directrix of degree d/2 - 1 by studying divisors in this moduli space of stable maps. For example, there are 128054031872040 rational ruled sextics passing through 25 points in P-3 with a minimal directrix of degree 2. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:857 / 868
页数:12
相关论文
共 15 条