The effect of torsional deformation on thermal conductivity of mono-, bi- and trilayer graphene nanoribbon

被引:10
|
作者
Chellattoan, Ragesh [1 ]
Sathian, Sarith P. [1 ]
机构
[1] Natl Inst Technol, Sch Nanosci & Technol, Calicut 673601, Kerala, India
关键词
Graphene; Molecular dynamics; Thermal conductivity; Phonon; PHONON-DISPERSION;
D O I
10.1016/j.ssc.2013.08.027
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Physical deformation and geometrical change of a low dimensional nanostructure influence the phonon transport leading to appreciable changes in the thermal characteristics. In this paper, we report the calculation of the thermal conductivity of twisted graphene nanoribbon (GNR) using nonequilibrium molecular dynamics (NEMD). A reduction in the value of thermal conductivity of GNR is observed with an increase in the angle of twist. It is observed that the value of thermal conductivity of twisted GNR is dependent on the length of GNR and the temperature at which physical deformation is taking place. Comparing with monolayer GNR, the reduction in the thermal conductivity of bilayer and trilayer GNR is less due to the interactions between the adjacent layers. Analysis of the phonon transport in twisted graphene implies that the reduced thermal conductivity of twisted graphene nanoribbon is due to the phonon softening of acoustic phonon modes. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [31] Formation of mono-, bi-, and polyradicals upon reduction of poly(arylenesulfophthalides) by metallic lithium
    N. M. Shishlov
    V. N. Khrustaleva
    Sh. S. Akhmetzyanov
    N. G. Gileva
    N. L. Asfandiarov
    S. A. Pshenichnyuk
    E. S. Shikhovtseva
    Russian Chemical Bulletin, 2003, 52 : 385 - 390
  • [32] Areneruthenium(II) complexes with functionalized phosphines coordinating as mono-, bi- or tridentate ligands
    Werner, H
    Bank, J
    Windmüller, B
    Gevert, O
    Wolfsberger, W
    HELVETICA CHIMICA ACTA, 2001, 84 (10) : 3162 - 3177
  • [33] Application of pharmacokinetics to computed tomography injection rates and schemes: Mono-, bi-, or multiphasic?
    Krause, W
    INVESTIGATIVE RADIOLOGY, 1996, 31 (02) : 91 - 100
  • [34] Mono-, bi-, or tridentate ligands?: The labeling of peptides with 99mTc-carbonyls
    Alberto, R
    Pak, JK
    van Staveren, D
    Mundwiler, S
    Benny, P
    BIOPOLYMERS, 2004, 76 (04) : 324 - 333
  • [35] Formation of mono-, bi-, and polyradicals upon reduction of poly(arylenesulfophthalides) by metallic lithium
    Shishlov, NM
    Khrustaleva, VN
    Akhmetzyanov, SS
    Gileva, NG
    Asfandiarov, NL
    Pshenichnyuk, SA
    Shikhovtseva, ES
    RUSSIAN CHEMICAL BULLETIN, 2003, 52 (02) : 385 - 390
  • [36] Rapid entry into mono-, bi-, and tricyclic β-lactam arrays via alkene metathesis
    Barrett, AGM
    Baugh, SPD
    Braddock, DC
    Flack, K
    Gibson, VC
    Giles, MR
    Marshall, EL
    Procopiou, PA
    White, AJP
    Williams, DJ
    JOURNAL OF ORGANIC CHEMISTRY, 1998, 63 (22): : 7893 - 7907
  • [37] Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit
    van Baalen, Sophie
    Leemans, Alexander
    Dik, Pieter
    Lilien, Marc R.
    ten Haken, Bennie
    Froeling, Martijn
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (01) : 228 - 239
  • [38] Dirac cones for bi- and trilayer Bernal-stacked graphene in a quantum graph model
    de Oliveira, Cesar R.
    Rocha, Vinicius L.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (50)
  • [39] Thermal conductivity of giant mono- to few-layered CVD graphene supported on an organic substrate
    Liu, Jing
    Wang, Tianyu
    Xu, Shen
    Yuan, Pengyu
    Xu, Xu
    Wang, Xinwei
    NANOSCALE, 2016, 8 (19) : 10298 - 10309
  • [40] Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry
    Chang, You-Chia
    Liu, Chang-Hua
    Liu, Che-Hung
    Zhong, Zhaohui
    Norris, Theodore B.
    APPLIED PHYSICS LETTERS, 2014, 104 (26)