Infectious cDNA clone of the epidemic West Nile virus from New York City

被引:179
作者
Shi, PY [1 ]
Tilgner, M
Lo, MK
Kent, KA
Bernard, KA
机构
[1] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA
[2] SUNY Albany, Dept Biomed Sci, Albany, NY 12201 USA
关键词
D O I
10.1128/JVI.76.12.5847-5856.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We report the first full-length infectious clone of the current epidemic, lineage I, strain of West Nile virus (WNV). The full-length cDNA was constructed from reverse transcription-PCR products of viral RNA from an isolate collected during the year 2000 outbreak in New York City. It was cloned into plasmid pBR322 under the control of a T7 promoter and stably amplified in Escherichia coli HB101. RNA transcribed from the full-length cDNA clone was highly infectious upon transfection into BHK-21 cells, resulting in progeny virus with titers of 1 x 10(9) to 5 x 10(9) PFU/ml. The cDNA clone was engineered to contain three silent nucleotide changes to create a StyI site (C to A and A to G at nucleotides [nt] 8859 and 8862, respectively) and to knock out an EcoRI site (A to G at nt 8880). These genetic markers were retained in the recovered progeny virus. Deletion of the 3'-terminal 199 nt of the cDNA transcript abolished the infectivity of the RNA. The plaque morphology, in vitro growth characteristics in mammalian and insect cells, and virulence in adult mice were indistinguishable for the parental and recombinant viruses. The stable infectious cDNA clone of the epidemic lineage I strain will provide a valuable experimental system to study the pathogenesis and replication of WNV.
引用
收藏
页码:5847 / 5856
页数:10
相关论文
共 70 条
[1]   De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase [J].
Ackermann, M ;
Padmanabhan, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39926-39937
[2]   Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut [J].
Anderson, JF ;
Andreadis, TG ;
Vossbrinck, CR ;
Tirrell, S ;
Wakem, EM ;
French, RA ;
Garmendia, AE ;
Van Kruiningen, HJ .
SCIENCE, 1999, 286 (5448) :2331-2333
[3]   Structures of immature flavivirus particles [J].
Zhang, Y ;
Corver, J ;
Chipman, PR ;
Zhang, W ;
Pletnev, SV ;
Sedlak, D ;
Baker, TS ;
Strauss, JH ;
Kuhn, RJ ;
Rossmann, MG .
EMBO JOURNAL, 2003, 22 (11) :2604-2613
[4]   West Nile virus activity in the United States, 2001 [J].
Bernard, KA ;
Kramer, LD .
VIRAL IMMUNOLOGY, 2001, 14 (04) :319-338
[5]   Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses [J].
Berthet, FX ;
Zeller, HG ;
Drouet, MT ;
Rauzier, J ;
Digoutte, JP ;
Deubel, V .
JOURNAL OF GENERAL VIROLOGY, 1997, 78 :2293-2297
[6]   Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA [J].
Blackwell, JL ;
Brinton, MA .
JOURNAL OF VIROLOGY, 1997, 71 (09) :6433-6444
[7]   BHK CELL-PROTEINS THAT BIND TO THE 3' STEM-LOOP STRUCTURE OF THE WEST NILE VIRUS GENOME RNA [J].
BLACKWELL, JL ;
BRINTON, MA .
JOURNAL OF VIROLOGY, 1995, 69 (09) :5650-5658
[8]   THE 3'-NUCLEOTIDES OF FLAVIVIRUS GENOMIC RNA FORM A CONSERVED SECONDARY STRUCTURE [J].
BRINTON, MA ;
FERNANDEZ, AV ;
DISPOTO, JH .
VIROLOGY, 1986, 153 (01) :113-121
[9]   SEQUENCE AND SECONDARY STRUCTURE-ANALYSIS OF THE 5'-TERMINAL REGION OF FLAVIVIRUS GENOME RNA [J].
BRINTON, MA ;
DISPOTO, JH .
VIROLOGY, 1988, 162 (02) :290-299
[10]   Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5′ noncoding region and nonstructural proteins 1 and 3 [J].
Butrapet, S ;
Huang, CYH ;
Pierro, DJ ;
Bhamarapravati, N ;
Gubler, DJ ;
Kinney, RM .
JOURNAL OF VIROLOGY, 2000, 74 (07) :3011-3019