Thermodynamic models for vapor-liquid equilibria of nitrogen plus oxygen plus carbon dioxide at low temperatures

被引:22
作者
Vrabec, Jadran [1 ]
Kedia, Gaurav Kumar [2 ]
Buchhauser, Ulrich [3 ]
Meyer-Pittroff, Roland [4 ]
Hasse, Hans [5 ]
机构
[1] Univ Gesamthsch Paderborn, Lehrstuhl Thermodynam & Energietech, D-33098 Paderborn, Germany
[2] Univ Stuttgart, Inst Tech Thermodynam & Therm Verfahrenstech, D-70550 Stuttgart, Germany
[3] Tech Univ Munich, Lehrstuhl Rohstoff & Energietechnol, D-85350 Freising Weihenstephan, Germany
[4] Univ Munich, D-85354 Freising Weihenstephan, Germany
[5] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany
关键词
Thermodynamics; ARGON&CARBON MONOXIDE; MOLECULAR SIMULATION; PHASE-EQUILIBRIUM; HENRYS CONSTANT; SYSTEM; PRESSURES; BINARY; MIXTURES; METHANE; FLUIDS;
D O I
10.1016/j.cryogenics.2008.11.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N-2 + O-2 + CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VILE data. On the basis of this model, the Henry's law constants of N-2 and O-2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 59 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   VAPOR-LIQUID-EQUILIBRIA FOR THE TERNARY-SYSTEM N2+CO2+CH4 AT 230-K AND 250-K [J].
ALSAHHAF, TA .
FLUID PHASE EQUILIBRIA, 1990, 55 (1-2) :159-172
[3]   LIQUID + VAPOR EQUILIBRIA IN THE N2+CO2+CH4 SYSTEM [J].
ALSAHHAF, TA ;
KIDNAY, AJ ;
SLOAN, ED .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1983, 22 (04) :372-380
[4]  
ALWAKEEL IM, 1976, THESIS TU BERLIN
[5]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[6]  
Arai Y., 1971, J. Chem. Eng. Jpn, V4, P113
[7]   LIQUID-VAPOR PHASE EQUILIBRIUM IN SOLUTIONS OF OXYGEN AND NITROGEN AT PRESSURES BELOW ONE ATMOSPHERE [J].
ARMSTRONG, GT ;
GOLDSTEIN, JM ;
ROBERTS, DE .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1955, 55 (05) :265-277
[8]   New equipment using a static analytic method for the study of vapour-liquid equilibria at temperatures down to 77 K [J].
Baba-Ahmed, A ;
Guilbot, P ;
Richon, D .
FLUID PHASE EQUILIBRIA, 1999, 166 (02) :225-236
[9]  
BALY ECC, 1899, P PHYS SOC LOND, V17, P157
[10]  
BIAN B, 1992, THESIS