Thermodynamic models for vapor-liquid equilibria of nitrogen plus oxygen plus carbon dioxide at low temperatures

被引:21
作者
Vrabec, Jadran [1 ]
Kedia, Gaurav Kumar [2 ]
Buchhauser, Ulrich [3 ]
Meyer-Pittroff, Roland [4 ]
Hasse, Hans [5 ]
机构
[1] Univ Gesamthsch Paderborn, Lehrstuhl Thermodynam & Energietech, D-33098 Paderborn, Germany
[2] Univ Stuttgart, Inst Tech Thermodynam & Therm Verfahrenstech, D-70550 Stuttgart, Germany
[3] Tech Univ Munich, Lehrstuhl Rohstoff & Energietechnol, D-85350 Freising Weihenstephan, Germany
[4] Univ Munich, D-85354 Freising Weihenstephan, Germany
[5] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany
关键词
Thermodynamics; ARGON&CARBON MONOXIDE; MOLECULAR SIMULATION; PHASE-EQUILIBRIUM; HENRYS CONSTANT; SYSTEM; PRESSURES; BINARY; MIXTURES; METHANE; FLUIDS;
D O I
10.1016/j.cryogenics.2008.11.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N-2 + O-2 + CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VILE data. On the basis of this model, the Henry's law constants of N-2 and O-2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 59 条
  • [1] Allen M. P., 1987, Computer Simulation of Liquids, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
  • [2] VAPOR-LIQUID-EQUILIBRIA FOR THE TERNARY-SYSTEM N2+CO2+CH4 AT 230-K AND 250-K
    ALSAHHAF, TA
    [J]. FLUID PHASE EQUILIBRIA, 1990, 55 (1-2) : 159 - 172
  • [3] LIQUID + VAPOR EQUILIBRIA IN THE N2+CO2+CH4 SYSTEM
    ALSAHHAF, TA
    KIDNAY, AJ
    SLOAN, ED
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1983, 22 (04): : 372 - 380
  • [4] ALWAKEEL IM, 1976, THESIS TU BERLIN
  • [5] MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE
    ANDERSEN, HC
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) : 2384 - 2393
  • [6] Arai Y., 1971, J. Chem. Eng. Jpn, V4, P113
  • [7] LIQUID-VAPOR PHASE EQUILIBRIUM IN SOLUTIONS OF OXYGEN AND NITROGEN AT PRESSURES BELOW ONE ATMOSPHERE
    ARMSTRONG, GT
    GOLDSTEIN, JM
    ROBERTS, DE
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1955, 55 (05): : 265 - 277
  • [8] New equipment using a static analytic method for the study of vapour-liquid equilibria at temperatures down to 77 K
    Baba-Ahmed, A
    Guilbot, P
    Richon, D
    [J]. FLUID PHASE EQUILIBRIA, 1999, 166 (02) : 225 - 236
  • [9] BALY ECC, 1899, P PHYS SOC LOND, V17, P157
  • [10] BIAN B, 1992, THESIS