Structural Basis for the Regulation of Maternal Embryonic Leucine Zipper Kinase

被引:20
作者
Cao, Lu-Sha
Wang, Jue
Chen, Yuling
Deng, Haiteng
Wang, Zhi-Xin
Wu, Jia-Wei [1 ]
机构
[1] Tsinghua Univ, Sch Life Sci, MOE Key Lab Prot Sci, Beijing 100084, Peoples R China
关键词
ACTIVATED PROTEIN-KINASE; UBIQUITIN-ASSOCIATED DOMAINS; MELK; PHOSPHORYLATION; FAMILY; MARK/PAR-1; CELLS; AMPK; PROLIFERATION; CONFORMATION;
D O I
10.1371/journal.pone.0070031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
MELK (maternal embryonic leucine zipper kinase), which is a member of the AMPK (AMP-activated protein kinase)-related kinase family, plays important roles in diverse cellular processes and has become a promising drug target for certain cancers. However, the regulatory mechanism of MELK remains elusive. Here, we report the crystal structure of a fragment of human MELK that contains the kinase domain and ubiquitin-associated (UBA) domain. The UBA domain tightly binds to the back of the kinase domain, which may contribute to the proper conformation and activity of the kinase domain. Interestingly, the activation segment in the kinase domain displays a unique conformation that contains an intramolecular disulfide bond. The structural and biochemical analyses unravel the molecular mechanisms for the autophosphorylation/ activation of MELK and the dependence of its catalytic activity on reducing agents. Thus, our results may provide the basis for designing specific MELK inhibitors for cancer treatment.
引用
收藏
页数:11
相关论文
共 49 条
[1]   PHENIX:: building new software for automated crystallographic structure determination [J].
Adams, PD ;
Grosse-Kunstleve, RW ;
Hung, LW ;
Ioerger, TR ;
McCoy, AJ ;
Moriarty, NW ;
Read, RJ ;
Sacchettini, JC ;
Sauter, NK ;
Terwilliger, TC .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :1948-1954
[2]   Substrate specificity and activity regulation of protein kinase MELK [J].
Beullens, M ;
Vancauwenbergh, S ;
Morrice, N ;
Derua, R ;
Ceulemans, H ;
Waelkens, E ;
Bollen, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) :40003-40011
[3]   Structural insight into the autoinhibition mechanism of AMP-activated protein kinase [J].
Chen, Lei ;
Jiao, Zhi-Hao ;
Zheng, Li-Sha ;
Zhang, Yuan-Yuan ;
Xie, Shu-Tao ;
Wang, Zhi-Xin ;
Wu, Jia-Wei .
NATURE, 2009, 459 (7250) :1146-U139
[4]   The C-elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions [J].
Cordes, Shaun ;
Frank, C. Andrew ;
Garriga, Gian .
DEVELOPMENT, 2006, 133 (14) :2747-2756
[5]   Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase [J].
Crute, BE ;
Seefeld, K ;
Gamble, J ;
Kemp, BE ;
Witters, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :35347-35354
[6]   SIMILAR SUBSTRATE RECOGNITION MOTIFS FOR MAMMALIAN AMP-ACTIVATED PROTEIN-KINASE, HIGHER-PLANT HMG-COA REDUCTASE KINASE-A, YEAST SNF1, AND MAMMALIAN CALMODULIN-DEPENDENT PROTEIN-KINASE-I [J].
DALE, S ;
WILSON, WA ;
EDELMAN, AM ;
HARDIE, DG .
FEBS LETTERS, 1995, 361 (2-3) :191-195
[7]   Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation [J].
Davezac, N ;
Baldin, W ;
Blot, J ;
Ducommun, B ;
Tassan, JP .
ONCOGENE, 2002, 21 (50) :7630-7641
[8]   MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption [J].
Drewes, G ;
Ebneth, A ;
Preuss, U ;
Mandelkow, EM ;
Mandelkow, E .
CELL, 1997, 89 (02) :297-308
[9]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[10]   Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells [J].
Gil, M ;
Yang, Y ;
Lee, Y ;
Choi, I ;
Ha, H .
GENE, 1997, 195 (02) :295-301