Single-electron double quantum dot dipole-coupled to a single photonic mode

被引:57
作者
Basset, J. [1 ]
Jarausch, D-D. [1 ]
Stockklauser, A. [1 ]
Frey, T. [1 ]
Reichl, C. [1 ]
Wegscheider, W. [1 ]
Ihn, T. M. [1 ]
Ensslin, K. [1 ]
Wallraff, A. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
SPIN;
D O I
10.1103/PhysRevB.88.125312
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have realized a hybrid solid-state quantum device in which a single-electron semiconductor double quantum dot is dipole coupled to a superconducting microwave frequency transmission line resonator. The dipolar interaction between the two entities manifests itself via dispersive and dissipative effects observed as frequency shifts and linewidth broadenings of the photonic mode respectively. A Jaynes-Cummings Hamiltonian master equation calculation is used to model the combined system response and allows for determining both the coherence properties of the double quantum dot and its interdot tunnel coupling with high accuracy. The value and uncertainty of the tunnel coupling extracted from the microwave read-out technique are compared to a standard quantum point contact charge detection analysis. The two techniques are found to be consistent with a superior precision for the microwave experiment when tunneling rates approach the resonator eigenfrequency. Decoherence properties of the double dot are further investigated as a function of the number of electrons inside the dots. They are found to be similar in the single-electron and many-electron regimes suggesting that the density of the confinement energy spectrum plays a minor role in the decoherence rate of the system under investigation.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Nonlocal transport properties of nanoscale conductor-microwave cavity systems [J].
Bergenfeldt, C. ;
Samuelsson, P. .
PHYSICAL REVIEW B, 2013, 87 (19)
[2]   Microwave quantum optics and electron transport through a metallic dot strongly coupled to a transmission line cavity [J].
Bergenfeldt, C. ;
Samuelsson, P. .
PHYSICAL REVIEW B, 2012, 85 (04)
[3]   InSitu Reduction of Charge Noise in GaAs/AlxGa1-xAs Schottky-Gated Devices [J].
Buizert, Christo ;
Koppens, Frank H. L. ;
Pioro-Ladriere, Michel ;
Tranitz, Hans-Peter ;
Vink, Ivo T. ;
Tarucha, Seigo ;
Wegscheider, Werner ;
Vandersypen, Lieven M. K. .
PHYSICAL REVIEW LETTERS, 2008, 101 (22)
[4]   Mesoscopic cavity quantum electrodynamics with quantum dots [J].
Childress, L ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW A, 2004, 69 (04) :042302-1
[5]   Spin Quantum Bit with Ferromagnetic Contacts for Circuit QED [J].
Cottet, Audrey ;
Kontos, Takis .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)
[6]   Photon-mediated interaction between distant quantum dot circuits [J].
Delbecq, M. R. ;
Bruhat, L. E. ;
Viennot, J. J. ;
Datta, S. ;
Cottet, A. ;
Kontos, T. .
NATURE COMMUNICATIONS, 2013, 4
[7]   Coupling a Quantum Dot, Fermionic Leads, and a Microwave Cavity on a Chip [J].
Delbecq, M. R. ;
Schmitt, V. ;
Parmentier, F. D. ;
Roch, N. ;
Viennot, J. J. ;
Feve, G. ;
Huard, B. ;
Mora, C. ;
Cottet, A. ;
Kontos, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[8]   Differential charge sensing and charge delocalization in a tunable double quantum dot [J].
DiCarlo, L ;
Lynch, HJ ;
Johnson, AC ;
Childress, LI ;
Crockett, K ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
PHYSICAL REVIEW LETTERS, 2004, 92 (22) :226801-1
[9]  
Elzerman JM, 2004, NATURE, V430, P431, DOI 10.1039/nature02693
[10]   Few-electron quantum dot circuit with integrated charge read out [J].
Elzerman, JM ;
Hanson, R ;
Greidanus, JS ;
van Beveren, LHW ;
De Franceschi, S ;
Vandersypen, LMK ;
Tarucha, S ;
Kouwenhoven, LP .
PHYSICAL REVIEW B, 2003, 67 (16)