Analysis of relaxed nonlinear inexact Uzawa algorithm for symmetric saddle point problems

被引:0
作者
Lu, Jun-Feng [1 ]
Chen, Lei [1 ]
机构
[1] Zhejiang Gongshang Univ, Hangzhou Inst Commerce, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Saddle point problem; Uzawa algorithm; Variable accuracy; Variable relaxation parameter;
D O I
10.1007/s40314-019-0815-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a relaxed nonlinear inexact Uzawa algorithm (RNIU) for solving the symmetric saddle point problems. It is an inner-outer iteration method with the inner iterations using variable accuracy for solving the approximate Schur complement system. The variable relaxation parameter is introduced to improve the convergence. We give the convergence analysis of this relaxed algorithm with variable inner accuracy, based on a simple energy norm. Sufficient conditions are given for the convergence of RNIU, which slightly improve the existing convergence results for the nonlinear inexact Uzawa algorithm with uniform inner accuracy in the literature. A practical approach for setting the variable relaxed parameters is proposed, and numerical experiments are given to illustrate the efficiency and sensitivity of RNIU.
引用
收藏
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1958, STUDIES LINEAR NONLI
[2]   On parameterized inexact Uzawa methods for generalized saddle point problems [J].
Bai, Zhong-Zhi ;
Wang, Zeng-Qi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2900-2932
[3]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[4]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[5]   A preconditioner for generalized saddle point problems [J].
Benzi, M ;
Golub, GH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :20-41
[6]   An efficient solver for the incompressible Navier-Stokes equations in rotation form [J].
Benzi, Michele ;
Liu, Jia .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05) :1959-1981
[7]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[8]   Fast Uzawa algorithm for generalized saddle point problems [J].
Cao, ZH .
APPLIED NUMERICAL MATHEMATICS, 2003, 46 (02) :157-171
[9]   On the nonlinear inexact Uzawa algorithm for saddle-point problems [J].
Cheng, XL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :1930-1934
[10]  
Elman H., 2005, FINITE ELEMENTS FAST