Linear generalized synchronization of chaotic systems with uncertain parameters

被引:5
作者
Zhen, Jia [1 ]
机构
[1] Guilin Univ Technol, Dept Math & Phys, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized synchronization; chaotic system; hyperchaotic system; uncertain parameter; adaptive technique;
D O I
10.1016/S1004-4132(08)60153-X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A more general form of projective synchronization, so called linear generalized synchronization (LOS) is proposed, which includes the generalized projective synchronization (GPS) and the hybrid projective synchronization (HPS) as its special cases. Based on the adaptive technique and Lyapunov stability theory, a general method for achieving the LOS between two chaotic or hyperchaotic systems with uncertain parameters in any scaling matrix is presented. Some numerical simulations are provided to show the effectiveness and feasibility of the proposed synchronization method.
引用
收藏
页码:779 / 784
页数:6
相关论文
共 17 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[3]  
Chen G., 2003, Chaos Control: Theory and Applications, Vvol 292
[4]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[5]   Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong ;
Hu, Aihua .
PHYSICS LETTERS A, 2007, 365 (04) :315-327
[6]   Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters [J].
Department of Mathematics and Physics, Guilin University of Technology, Guilin 541004, China ;
不详 .
Chin. Phys., 2007, 5 (1246-1251) :1246-1251
[7]  
Khalil HK., 2002, NONLINEAR SYSTEMS, V3rd edition
[8]   Generating hyperchaos via state feedback control [J].
Li, YX ;
Tang, WKS ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3367-3375
[9]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[10]  
2