Quantitative estimation of properties from core-loss spectrum via neural network

被引:17
作者
Kiyohara, Shin [1 ]
Tsubaki, Masashi [2 ]
Liao, Kunyen [1 ]
Mizoguchi, Teruyasu [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tokyo 1350064, Japan
来源
JOURNAL OF PHYSICS-MATERIALS | 2019年 / 2卷 / 02期
关键词
core-loss spectroscopy; machine learning; neural network; atomic scale; quantification; SPECTROSCOPY;
D O I
10.1088/2515-7639/ab0b68
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Localized structures in nano- and sub-nano-scales strongly affect material properties. Thus, some spectroscopic techniques have been used to characterize local atomic and electronic structures. If material properties can be directly 'measured' via spectral observations, the atomic-scale understanding of the material properties would be dramatically facilitated. In this paper, we have attempted to unveil the hidden information about the material properties directly and quantitatively based on core-loss spectra. We predicted six properties, including three geometrical and three chemical bonding properties, by a simple feedforward neural network, and achieved considerably sufficient accuracy. Moreover, we applied the constructed model to the noisy experimental spectrum and could predict the six properties precisely. This successful prediction implies that this method can pave the way for local measurement of the material properties.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 1996, PHYS REV B, DOI DOI 10.1103/PHYSREVB.54.4604
[2]   Direct Evidence of Fe2+-Fe3+ Charge Ordering in the Ferrimagnetic Hematite-Ilmenite Fe1.35Ti0.65O3-δ Thin Films [J].
Bocher, L. ;
Popova, E. ;
Nolan, M. ;
Gloter, A. ;
Chikoidze, E. ;
March, K. ;
Warot-Fonrose, B. ;
Berini, B. ;
Stephan, O. ;
Keller, N. ;
Dumont, Y. .
PHYSICAL REVIEW LETTERS, 2013, 111 (16)
[3]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[4]   Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation [J].
Cuny, Jerome ;
Xie, Yu ;
Pickard, Chris J. ;
Hassanali, Ali A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (02) :765-773
[5]   Mapping and classifying molecules from a high-throughput structural database [J].
De, Sandip ;
Musil, Felix ;
Ingram, Teresa ;
Baldauf, Carsten ;
Ceriotti, Michele .
JOURNAL OF CHEMINFORMATICS, 2017, 9 :1-14
[6]  
Egerton R. F., 1996, Electron Energy-Loss Spectroscopy in the Electron Microscope
[7]   Predicting crystal structure by merging data mining with quantum mechanics [J].
Fischer, Christopher C. ;
Tibbetts, Kevin J. ;
Morgan, Dane ;
Ceder, Gerbrand .
NATURE MATERIALS, 2006, 5 (08) :641-646
[8]   Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices [J].
Gauquelin, N. ;
Benckiser, E. ;
Kinyanjui, M. K. ;
Wu, M. ;
Lu, Y. ;
Christiani, G. ;
Logvenov, G. ;
Habermeier, H. -U. ;
Kaiser, U. ;
Keimer, B. ;
Botton, G. A. .
PHYSICAL REVIEW B, 2014, 90 (19)
[9]   Atomically resolved mapping of EELS fine structures [J].
Gloter, Alexandre ;
Badjeck, Vincent ;
Bocher, Laura ;
Brun, Nathalie ;
March, Katia ;
Marinova, Maya ;
Tence, Marcel ;
Walls, Michael ;
Zobelli, Alberto ;
Stephan, Odile ;
Colliex, Christian .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 65 :2-17
[10]  
Grisolia MN, 2016, NAT PHYS, V12, P484, DOI [10.1038/nphys3627, 10.1038/NPHYS3627]