A class of Einstein-Weyl spaces associated to an integrable system of hydrodynamic type

被引:84
作者
Dunajski, M [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 OWA, England
关键词
Einstein-Weyl geometry; twistor theory; integrable systems;
D O I
10.1016/j.geomphys.2004.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
HyperCR Einstein-Weyl equations in 2 + 1 dimensions reduce to a pair of quasi-linear PDEs of hydrodynamic type. All solutions to this hydrodynamic system can in principle be constructed from a twistor correspondence, thus establishing the integrability. Simple examples of solutions including the hydrodynamic reductions yield new Einstein-Weyl structures. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 23 条
[1]   Towards a theory of differential constraints of a hydrodynamic hierarchy [J].
Alonso, LM ;
Shabat, AB .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (02) :229-242
[2]  
[Anonymous], IZV AKAD NAUK SSSR M
[3]   Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics [J].
Calderbank, DMJ ;
Pedersen, H .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :921-+
[4]  
CARTAN E, 1943, ANN SCI ECOLE NORM S, V60, P1
[5]   The twisted photon associated to hyper-Hermitian four-manifolds [J].
Dunajski, M .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 30 (03) :266-281
[6]   Einstein-Weyl geometry, the dKP equation and twistor theory [J].
Dunajski, M ;
Mason, LJ ;
Tod, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (1-2) :63-93
[7]   Einstein-Weyl structures from hyper-Kahler metrics with conformal Killing vectors [J].
Dunajski, M ;
Tod, P .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (01) :39-55
[8]  
DUNAJSKI M, 1998, THESIS MATH I OXFORD
[9]  
FERAPONTOV EV, 2003, CHARACTERISATION 2 C
[10]  
FERAPONTOV EV, 2003, CLASSICAL QUANT GRAV, V20, P1