CONSTRUCTION OF GLOBAL FUNCTION FIELDS FROM LINEAR CODES AND VICE VERSA

被引:0
|
作者
Xing, Chaoping [1 ]
Yeo, Sze Ling [2 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637616, Singapore
[2] I2R, SSD, Singapore 119613, Singapore
关键词
ALGEBRAIC-GEOMETRY CODES; RATIONAL-POINTS; FINITE-FIELDS; CURVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new connection between linear codes and global function fields, which in turn allows us to construct new global function fields with improved lower bounds on the number of rational places. The genus and number of rational places of subfields of certain families of cyclotomic function fields are given as well.
引用
收藏
页码:1333 / 1349
页数:17
相关论文
共 50 条
  • [21] A New Construction of Multi-receiver Authentication Codes from Pseudo-Symplectic Geometry over Finite Fields
    Wang, Xiuli
    ARS COMBINATORIA, 2014, 114 : 41 - 51
  • [22] A new class of binary sequences with low correlation and large linear complexity from function fields
    Hu, HG
    Hu, L
    Feng, DG
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 1997 - 2001
  • [23] Relationships of bounds for sizes of subspace codes in singular linear spaces over finite fields
    Wang, Gang
    Niu, Min-Yao
    Fu, Fang-Wei
    ARS COMBINATORIA, 2020, 149 : 137 - 151
  • [24] Construction of Multi-receiver Multi-fold Authentication Codes from Singular Symplectic Geometry over Finite Fields
    Chen, Shangdi
    Zhao, Dawei
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 701 - 710
  • [25] Relationships of bounds for sizes of subspace codes in singular linear spaces over finite fields
    Wang, Gang
    Niu, Min-Yao
    Fu, Fang-Wei
    ARS COMBINATORIA, 2020, 152 : 151 - 165
  • [26] Multisequences with large linear and k-error linear complexity from a tower of Artin-Schreier extensions of function fields
    Tong, Hongxi
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 842 - 854
  • [27] The weight hierarchies of linear codes from simplicial complexes
    Liu, Chao
    Zheng, Dabin
    Lu, Wei
    Wang, Xiaoqiang
    DISCRETE MATHEMATICS, 2025, 348 (01)
  • [28] New construction of error-correcting pooling designs from singular linear spaces over finite fields
    Gang Wang
    You Gao
    Journal of Combinatorial Optimization, 2021, 41 : 197 - 212
  • [29] New construction of error-correcting pooling designs from singular linear spaces over finite fields
    Wang, Gang
    Gao, You
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 197 - 212
  • [30] Lattices from Hermitian function fields
    Boettcher, Albrecht
    Fukshansky, Lenny
    Garcia, Stephan Ramon
    Maharaj, Hiren
    JOURNAL OF ALGEBRA, 2016, 447 : 560 - 579