Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1α expression

被引:80
作者
Bárdos, JI [1 ]
Chau, NM [1 ]
Ashcroft, M [1 ]
机构
[1] Canc Res UK, Ctr Canc Therapeut, Inst Canc Res, Cell Growth Regulat & Angiogenesis Lab, Sutton SM2 5NG, Surrey, England
关键词
D O I
10.1128/MCB.24.7.2905-2914.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hypoxia-inducible factor 1 (HIF-1) transcriptional complex is regulated by cellular oxygen levels and growth factors. The phosphoinosotide 3-kinase (PI-3K)-Akt/protein kinase B (PKB) pathway has been shown to regulate HIF-1 activity in response to oncogenic signals and growth factors. We assessed whether the HDM2 oncoprotein, a direct target of Akt/PKB, could regulate HIF-1alpha expression and HIF-1 activity under normoxic conditions. We found that growth factor stimulation, overexpression of Akt/PKB, or loss of PTEN resulted in enhanced expression of both HIF-1alpha and HDM2. Growth factor-mediated induction of HIF-Ict was ablated by transient expression of a dominant negative form of Akt/PKB or by treatment with LY294002. Transient expression of HDM2 led to increased expression of HIF-1alpha. Pulse-chase and cycloheximide experiments revealed that HDM2 did not significantly affect the half-life of HIF-1alpha. Growth factor-induced HIF-1alpha and HDM2 proteins were localized to the nucleus, and induction of both proteins was observed in both p53(+/+) and p53(-/-) HCT116 cells to comparable levels. Importantly, insulin-like growth factor 1-induced HIF-Ict expression was observed in p53-null mouse embryo fibroblasts (MEFs) but was significantly impaired in p53 Mdm2 double-null MEFs, indicating a requirement for Mdm2 in this process. Finally, we showed that phosphorylation at Ser166 in HDM2 contributed in part to growth factor-mediated induction of HIF-1alpha. Our study has important implications for the role of the PI-3K-Akt/PKB-HDM2 pathway in tumor progression and angiogenesis.
引用
收藏
页码:2905 / 2914
页数:10
相关论文
共 39 条
[1]   Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension [J].
Alvarez-Tejado, M ;
Alfranca, A ;
Aragonés, J ;
Vara, A ;
Landázuri, MO ;
del Peso, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (16) :13508-13517
[2]   An essential role for p300/CBP in the cellular response to hypoxia [J].
Arany, Z ;
Huang, LE ;
Eckner, R ;
Bhattacharya, S ;
Jiang, C ;
Goldberg, MA ;
Bunn, HF ;
Livingston, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12969-12973
[3]   Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1α nor sufficient for HIF-1-dependent target gene transcription [J].
Arsham, AM ;
Plas, DR ;
Thompson, CB ;
Simon, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (17) :15162-15170
[4]   Stress signals utilize multiple pathways to stabilize p53 [J].
Ashcroft, M ;
Taya, Y ;
Vousden, KH .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (09) :3224-3233
[5]   Phosphorylation of HDM2 by Akt [J].
Ashcroft, M ;
Ludwig, RL ;
Woods, DB ;
Copeland, TD ;
Weber, HO ;
MacRae, EJ ;
Vousden, KH .
ONCOGENE, 2002, 21 (13) :1955-1962
[6]   p53 inhibits hypoxia-inducible factor-stimulated transcription [J].
Blagosklonny, MV ;
An, WG ;
Romanova, LY ;
Trepel, J ;
Fojo, T ;
Neckers, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (20) :11995-11998
[7]  
Blancher C, 2001, CANCER RES, V61, P7349
[8]   Disruption of p53 in human cancer cells alters the responses to therapeutic agents [J].
Bunz, F ;
Hwang, PM ;
Torrance, C ;
Waldman, T ;
Zhang, YG ;
Dillehay, L ;
Williams, J ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (03) :263-269
[9]   Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α [J].
Chan, DA ;
Sutphin, PD ;
Denko, NC ;
Giaccia, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (42) :40112-40117
[10]   Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein [J].
Cockman, ME ;
Masson, N ;
Mole, DR ;
Jaakkola, P ;
Chang, GW ;
Clifford, SC ;
Maher, ER ;
Pugh, CW ;
Ratcliffe, PJ ;
Maxwell, PH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25733-25741