CONVERGENCE OF GENERAL INVERSE σk- FLOW ON KAHLER MANIFOLDS WITH CALABI ANSATZ

被引:0
作者
Fang, Hao [1 ]
Lai, Mijia [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
RICCI FLOW;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the convergence behavior of the general inverse sigma(k)-flow on Kahler manifolds with initial metrics satisfying the Calabi ansatz. The limiting metrics can be either smooth or singular. In the latter case, interesting conic singularities along negatively self-intersected subvarieties are formed as a result of partial blow up.
引用
收藏
页码:6543 / 6567
页数:25
相关论文
共 25 条
  • [1] [Anonymous], ARXIV09094898
  • [2] The obstacle problem revisited
    Caffarelli, LA
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) : 383 - 402
  • [3] CALABI E, 1982, ANN MATH STUD, P259
  • [5] Chen XX, 2004, COMMUN ANAL GEOM, V12, P837
  • [6] Donaldson S.K., 1999, Asian J. Math, V1, P1
  • [7] SINGULAR KAHLER-EINSTEIN METRICS
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (03) : 607 - 639
  • [8] Fang H., PAC J MATH IN PRESS
  • [9] On a class of fully nonlinear flows in Kahler geometry
    Fang, Hao
    Lai, Mijia
    Ma, Xinan
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 653 : 189 - 220
  • [10] Feldman M, 2003, J DIFFER GEOM, V65, P169