Using inexact gradients in a multilevel optimization algorithm

被引:9
作者
Lewis, Robert Michael [1 ]
Nash, Stephen G. [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] George Mason Univ, Syst Engn & Operat Res Dept, Fairfax, VA 22030 USA
关键词
Multilevel optimization; Inexact gradient evaluation; Optimization-based multigrid; Nonlinear optimization; GLOBAL CONVERGENCE; DIRECT SEARCH; INFORMATION;
D O I
10.1007/s10589-013-9546-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Many optimization algorithms require gradients of the model functions, but computing accurate gradients can be computationally expensive. We study the implications of using inexact gradients in the context of the multilevel optimization algorithm MG/Opt. MG/Opt recursively uses (typically cheaper) coarse models to obtain search directions for finer-level models. However, MG/Opt requires the gradient on the fine level to define the recursion. Our primary focus here is the impact of the gradient errors on the multilevel recursion. We analyze, partly through model problems, how MG/Opt is affected under various assumptions about the source of the error in the gradients, and demonstrate that in many cases the effect of the errors is benign. Computational experiments are included.
引用
收藏
页码:39 / 61
页数:23
相关论文
共 14 条
[1]   OPTIMIZATION ALGORITHMS FOR HIERARCHICAL PROBLEMS WITH APPLICATION TO NANOPOROUS MATERIALS [J].
Boggs, Paul T. ;
Gay, David M. ;
Griffiths, Stewart K. ;
Lewis, Robert Michael ;
Long, Kevin R. ;
Nash, Stephen ;
Nilson, Robert H. .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) :1285-1308
[2]  
BOGGS PT, 1976, MATH COMPUT, V30, P199, DOI 10.1090/S0025-5718-1976-0395209-4
[3]   NUMERICAL EXPERIENCE WITH A CLASS OF ALGORITHMS FOR NONLINEAR OPTIMIZATION USING INEXACT FUNCTION AND GRADIENT INFORMATION [J].
CARTER, RG .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (02) :368-388
[4]   ON THE GLOBAL CONVERGENCE OF TRUST REGION ALGORITHMS USING INEXACT GRADIENT INFORMATION [J].
CARTER, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :251-265
[5]   Using simplex gradients of nonsmooth functions in direct search methods [J].
Custodio, A. L. ;
Dennis, J. E. Jr ;
Vicente, L. N. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) :770-784
[6]  
Kolda TG, 2003, SIAM REV, V45, P385, DOI [10.1137/S003614450242889, 10.1137/S0036144502428893]
[7]   Model problems for the multigrid optimization of systems governed by differential equations [J].
Lewis, RM ;
Nash, SG .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :1811-1837
[8]  
More J., 1983, Mathematical Programming: The State of the Art, P258
[9]  
Nash S. G., 2010, CONVERGENCE DESCENT
[10]   A multigrid approach to discretized optimization problems [J].
Nash, SG .
OPTIMIZATION METHODS & SOFTWARE, 2000, 14 (1-2) :99-116