An extended stochastic finite element method for solving stochastic partial differential equations on random domains

被引:82
作者
Nouy, A. [1 ]
Clement, A. [1 ]
Schoefs, F. [1 ]
Moes, N. [1 ]
机构
[1] Univ Nantes, CNRS, Ecole Cent Nantes, Res Inst Civil Engn & Mech GeM,UMR 6183, F-44322 Nantes 3, France
关键词
Computational stochastic mechanics; Stochastic partial differential equations; Random domain; Extended finite element method; Stochastic finite element; Polynomial chaos;
D O I
10.1016/j.cma.2008.06.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, a new strategy was proposed to solve stochastic partial differential equations on random domains. It is based on the extension to the stochastic framework of the extended finite element method (X-FEM). This method leads by a "direct" calculus to an explicit solution in terms of the variables describing the randomness on the geometry. It relies on two major points: the implicit representation of complex geometries using random level-set functions and the use of a Galerkin approximation at both stochastic and deterministic levels. In this article, we detail the basis of this technique, from theoretical and technical points of view. Several numerical examples illustrate the efficiency of this method and compare it to other approaches. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4663 / 4682
页数:20
相关论文
共 48 条
[1]  
[Anonymous], 1974, RAIRO ANAL NUMER
[2]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[3]   Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (12-16) :1251-1294
[4]   Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems [J].
Babuska, I ;
Chleboun, J .
NUMERISCHE MATHEMATIK, 2003, 93 (04) :583-610
[5]  
Babuska I, 2002, MATH COMPUT, V71, P1339, DOI 10.1090/S0025-5718-01-01359-X
[6]   Structured extended finite element methods for solids defined by implicit surfaces [J].
Belytschko, T ;
Parimi, C ;
Moës, N ;
Sukumar, N ;
Usui, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 56 (04) :609-635
[7]   Stochastic finite element: a non intrusive approach by regression [J].
Berveiller, Marc ;
Sudret, Bruno ;
Lemaire, Maurice .
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2006, 15 (1-3) :81-92
[8]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[9]   A fictitious domain approach to the numerical solution of PDEs in stochastic domains [J].
Canuto, Claudio ;
Kozubek, Tomas .
NUMERISCHE MATHEMATIK, 2007, 107 (02) :257-293
[10]  
Daux C, 2000, INT J NUMER METH ENG, V48, P1741, DOI 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO