An Approach Based on Finite Element Method for CAD of Printed Antennas

被引:2
|
作者
El Jaafari, Bilal [1 ]
Gonzalez de Aza, Miguel A. [1 ]
Zapata, Juan [1 ]
机构
[1] Univ Politecn Madrid, ETSI Telecomunicac, Dept Electromagnetismo & Teoria Circuitos, E-28040 Madrid, Spain
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2012年 / 11卷
关键词
Domain decomposition technique; finite element method (FEM); optimization algorithm; piecewise linear approximations; printed antennas; MATRIX;
D O I
10.1109/LAWP.2012.2224085
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel computer-aided design (CAD) procedure for microstrip antennas is proposed in this letter. It is based on a previously developed analysis methodology that combines the finite element method (FEM), domain decomposition, and a technique called multipurpose admittance matrix. This method is reformulated in order to allow continuous geometry variations of conducting surfaces, making a 2D-FEM optimization process possible. Measured and numerical results for a practical broadband microstrip antenna design demonstrate its robustness and versatility.
引用
收藏
页码:1238 / 1241
页数:4
相关论文
共 50 条
  • [21] SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD
    袁驷
    和雪峰
    Applied Mathematics and Mechanics(English Edition), 2006, (11) : 1461 - 1474
  • [22] Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method
    袁驷
    杜炎
    邢沁妍
    叶康生
    AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (10) : 1223 - 1232
  • [23] Self-adaptive strategy for one-dimensional finite element method based on element energy projection method
    Yuan Si
    He Xue-Feng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (11) : 1461 - 1474
  • [24] Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method
    Yuan, Si
    Du, Yan
    Xing, Qin-yan
    Ye, Kang-sheng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (10) : 1223 - 1232
  • [25] Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method
    Si Yuan
    Yan Du
    Qin-yan Xing
    Kang-sheng Ye
    Applied Mathematics and Mechanics, 2014, 35 : 1223 - 1232
  • [26] A finite element method for quantum graphs
    Arioli, Mario
    Benzi, Michele
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1119 - 1163
  • [27] Wideband Macromodels in Finite Element Method
    Fotyga, Grzegorz
    Rewienski, Michal
    Mrozowski, Michal
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (12) : 766 - 768
  • [28] Selective Smoothed Finite Element Method
    T. T. Nguyen
    K. Y. Lam
    Tsinghua Science and Technology, 2007, (05) : 497 - 508
  • [29] Combination of Boundary Element Method and Finite Element Method in Diffuse Optical Tomography
    Elisee, Josias Pierrick
    Gibson, Adam
    Arridge, Simon
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (11) : 2737 - 2745
  • [30] Coupled analysis of 3D structural-acoustic problems using the edge-based smoothed finite element method/finite element method
    He, Z. C.
    Liu, G. R.
    Zhong, Z. H.
    Zhang, G. Y.
    Cheng, A. G.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (12) : 1114 - 1121