Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

被引:11
|
作者
Bandaliyev, R. A. [1 ,3 ]
Mamedov, I. G. [2 ]
Mardanov, M. J. [1 ,4 ]
Melikov, T. K. [1 ,2 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[2] NAS Azerbaijan, Inst Control Syst, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolsldi Inst Math, Moscow 117198, Russia
[4] Baku State Univ, Baku, Azerbaijan
关键词
Fractional optimal control problem; Initial value problem; Caputo fractional derivative; Weighed Lebesgue spaces; Pontryagin's maximum principle;
D O I
10.1007/s11590-019-01518-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin's maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
引用
收藏
页码:1519 / 1532
页数:14
相关论文
共 50 条