Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

被引:11
|
作者
Bandaliyev, R. A. [1 ,3 ]
Mamedov, I. G. [2 ]
Mardanov, M. J. [1 ,4 ]
Melikov, T. K. [1 ,2 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[2] NAS Azerbaijan, Inst Control Syst, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolsldi Inst Math, Moscow 117198, Russia
[4] Baku State Univ, Baku, Azerbaijan
关键词
Fractional optimal control problem; Initial value problem; Caputo fractional derivative; Weighed Lebesgue spaces; Pontryagin's maximum principle;
D O I
10.1007/s11590-019-01518-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin's maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
引用
收藏
页码:1519 / 1532
页数:14
相关论文
共 50 条
  • [11] On function spaces with fractional Fourier transform in weighted Lebesgue spaces
    Toksoy, Erdem
    Sandikci, Ayse
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [12] Terminal value problem for a generalized fractional ordinary differential equation
    Li, Can
    Li, Min-Min
    Zhou, Han
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (17) : 12963 - 12979
  • [13] Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces
    Harboure, E
    Salinas, O
    Viviani, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (01) : 235 - 255
  • [14] MULTILINEAR FRACTIONAL INTEGRALS IN WEIGHTED GRAND LEBESGUE SPACES
    Kokilashvili, V.
    Mastylo, M.
    Meskhi, A.
    PROCEEDINGS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2015, 169 : 143 - 153
  • [15] On the Solvability of Nonlinear Ordinary Differential Equations in Grand Lebesgue Spaces
    R. A. Bandaliyev
    K. H. Safarova
    Ukrainian Mathematical Journal, 2023, 74 : 1155 - 1164
  • [16] Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation
    Zhang, Lu
    Zhou, Zhaojie
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 247 - 262
  • [17] On the Solvability of Nonlinear Ordinary Differential Equations in Grand Lebesgue Spaces
    Bandaliyev, R. A.
    Safarova, K. H.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 74 (08) : 1155 - 1164
  • [18] TWO-WEIGHTED ESTIMATES OF THE MULTILINEAR FRACTIONAL INTEGRAL OPERATOR BETWEEN WEIGHTED LEBESGUE AND LIPSCHITZ SPACES WITH OPTIMAL PARAMETERS
    Berra, Fabio
    Pradolini, Gladis
    Ramos, Wilfredo
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 66 (01): : 69 - 90
  • [19] ON OPTIMAL CONTROL OF A SWEEPING PROCESS COUPLED WITH AN ORDINARY DIFFERENTIAL EQUATION
    Adam, Lukas
    Outrata, Jiri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (09): : 2709 - 2738
  • [20] The dual weighted residuals approach to optimal control of ordinary differential equations
    Karin Kraft
    Stig Larsson
    BIT Numerical Mathematics, 2010, 50 : 587 - 607