Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

被引:11
作者
Bandaliyev, R. A. [1 ,3 ]
Mamedov, I. G. [2 ]
Mardanov, M. J. [1 ,4 ]
Melikov, T. K. [1 ,2 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[2] NAS Azerbaijan, Inst Control Syst, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolsldi Inst Math, Moscow 117198, Russia
[4] Baku State Univ, Baku, Azerbaijan
关键词
Fractional optimal control problem; Initial value problem; Caputo fractional derivative; Weighed Lebesgue spaces; Pontryagin's maximum principle;
D O I
10.1007/s11590-019-01518-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin's maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
引用
收藏
页码:1519 / 1532
页数:14
相关论文
共 29 条
[1]   Fractional Optimal Control Problems with Several State and Control Variables [J].
Agrawal, Om P. ;
Defterli, Ozlem ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (13) :1967-1976
[2]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[3]   A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems [J].
Ali, Hegagi M. ;
Pereira, Fernando Lobo ;
Gama, Silvio M. A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) :3640-3649
[4]  
Alsaedi A, 2018, ELECTRON J DIFFER EQ, V2018, P87
[5]  
BACHAR I, 2017, ELECTRON J DIFF 1004
[6]  
Baleanu D, 2012, FRACTIONAL DYNAMICS
[7]   The optimal control problem in the processes described by the Goursat problem for a hyperbolic equation in variable exponent Sobolev spaces with dominating mixed derivatives [J].
Bandaliyev, R. A. ;
Guliyev, V. S. ;
Mamedov, I. G. ;
Sadigov, A. B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 :11-17
[8]   Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces [J].
Bandaliyev, Rovshan A. ;
Guliyev, Vagif S. ;
Mamedov, Ilgar G. ;
Rustamov, Yasin I. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) :303-320
[9]  
Castillo RE, 2016, INTRO COURSE LEBESGU
[10]  
Heinonen J., 2001, Lectures on analysis on metric spaces