Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

被引:11
|
作者
Bandaliyev, R. A. [1 ,3 ]
Mamedov, I. G. [2 ]
Mardanov, M. J. [1 ,4 ]
Melikov, T. K. [1 ,2 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[2] NAS Azerbaijan, Inst Control Syst, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolsldi Inst Math, Moscow 117198, Russia
[4] Baku State Univ, Baku, Azerbaijan
关键词
Fractional optimal control problem; Initial value problem; Caputo fractional derivative; Weighed Lebesgue spaces; Pontryagin's maximum principle;
D O I
10.1007/s11590-019-01518-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin's maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
引用
收藏
页码:1519 / 1532
页数:14
相关论文
共 50 条
  • [1] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    R. A. Bandaliyev
    I. G. Mamedov
    M. J. Mardanov
    T. K. Melikov
    Optimization Letters, 2020, 14 : 1519 - 1532
  • [2] Optimal Control Problem for a Degenerate Fractional Differential Equation
    Bandaliyev, R. A.
    Mamedov, I. G.
    Abdullayeva, A. B.
    Safarova, K. H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) : 1239 - 1247
  • [3] Optimal Control Problem for a Degenerate Fractional Differential Equation
    R. A. Bandaliyev
    I. G. Mamedov
    A. B. Abdullayeva
    K. H. Safarova
    Lobachevskii Journal of Mathematics, 2021, 42 : 1239 - 1247
  • [4] Naimark Problem for a Fractional Ordinary Differential Equation
    Gadzova, L. Kh.
    MATHEMATICAL NOTES, 2023, 114 (1-2) : 159 - 164
  • [5] Naimark Problem for a Fractional Ordinary Differential Equation
    L. Kh. Gadzova
    Mathematical Notes, 2023, 114 : 159 - 164
  • [6] A spectral Petrov-Galerkin method for optimal control problem governed by a fractional ordinary differential equation
    Wang, Yibo
    Cao, Wanrong
    Li, Shengyue
    APPLIED NUMERICAL MATHEMATICS, 2022, 177 : 18 - 33
  • [7] Fractional Integration in Weighted Lebesgue Spaces
    Avetisyan, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (02): : 57 - 67
  • [8] Fractional Integration in Weighted Lebesgue Spaces
    K. Avetisyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 57 - 67
  • [9] WEIGHTED INITIAL PROBLEM FOR FRACTIONAL DIFFERENTIAL EQUATION
    Smarda, Zdenek
    XXVII INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, 2009, : 148 - 154
  • [10] On function spaces with fractional Fourier transform in weighted Lebesgue spaces
    Erdem Toksoy
    Ayşe Sandıkçı
    Journal of Inequalities and Applications, 2015