Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

被引:11
|
作者
Bandaliyev, R. A. [1 ,3 ]
Mamedov, I. G. [2 ]
Mardanov, M. J. [1 ,4 ]
Melikov, T. K. [1 ,2 ]
机构
[1] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[2] NAS Azerbaijan, Inst Control Syst, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolsldi Inst Math, Moscow 117198, Russia
[4] Baku State Univ, Baku, Azerbaijan
关键词
Fractional optimal control problem; Initial value problem; Caputo fractional derivative; Weighed Lebesgue spaces; Pontryagin's maximum principle;
D O I
10.1007/s11590-019-01518-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin's maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
引用
收藏
页码:1519 / 1532
页数:14
相关论文
共 50 条
  • [1] Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces
    R. A. Bandaliyev
    I. G. Mamedov
    M. J. Mardanov
    T. K. Melikov
    Optimization Letters, 2020, 14 : 1519 - 1532
  • [2] Optimal Control Problem for a Degenerate Fractional Differential Equation
    Bandaliyev, R. A.
    Mamedov, I. G.
    Abdullayeva, A. B.
    Safarova, K. H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) : 1239 - 1247
  • [3] Optimal Control Problem for a Degenerate Fractional Differential Equation
    R. A. Bandaliyev
    I. G. Mamedov
    A. B. Abdullayeva
    K. H. Safarova
    Lobachevskii Journal of Mathematics, 2021, 42 : 1239 - 1247
  • [4] Optimal Control Problem of Positive Solutions to Fractional Differential Equations
    Wang, Jun
    Zhang, Lingling
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10136 - 10140
  • [5] Boundary Value Problem for a Linear Ordinary Differential Equation with a Fractional Discretely Distributed Differentiation Operator
    Gadzova, L. Kh.
    DIFFERENTIAL EQUATIONS, 2018, 54 (02) : 178 - 184
  • [6] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Bandaliyev, Rovshan A.
    Guliyev, Vagif S.
    Mamedov, Ilgar G.
    Rustamov, Yasin I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) : 303 - 320
  • [7] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Rovshan A. Bandaliyev
    Vagif S. Guliyev
    Ilgar G. Mamedov
    Yasin I. Rustamov
    Journal of Optimization Theory and Applications, 2019, 180 : 303 - 320
  • [8] A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
    Pavol Brunovský
    Aleš Černý
    Michael Winkler
    Applied Mathematics & Optimization, 2013, 68 : 255 - 274
  • [9] A Singular Differential Equation Stemming from an Optimal Control Problem in Financial Economics
    Brunovsky, Pavol
    Cerny, Ales
    Winkler, Michael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2013, 68 (02) : 255 - 274
  • [10] On the Convergence of Successive Approximations for a Fractional Differential Equation in Banach Spaces
    Dutkiewicz, Aldona
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03): : 305 - 310