On 3-Regular Partitions in 3-Colors

被引:5
|
作者
Gireesh, D. S. [1 ]
Naika, M. S. Mahadeva [2 ]
机构
[1] MS Ramaiah Univ Appl Sci, Dept Math, Bengaluru 560058, Karnataka, India
[2] Bangalore Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
关键词
Partitions; 3-colors; 3-regular partitions; congruences;
D O I
10.1007/s13226-019-0312-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider p({3,3})(n), the number of 3-regular partitions in 3-colors. We find the generating functions for p({3,3})(n) and deduce congruences modulo large powers of 3. We also find the generating functions and congruences for linear combination of p(3)(n) (the number of partitions of n in 3-colors) by finding the relation connecting p(3)(n) and p({3,3})(n). As an application, we find finite discrete convolution of p({3,1})(n) and p({3,2})(n).
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条
  • [1] On 3-Regular Partitions in 3-Colors
    D. S. Gireesh
    M. S. Mahadeva Naika
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 137 - 148
  • [2] Congruences modulo 4 for the number of 3-regular partitions
    Ballantine, Cristina
    Merca, Mircea
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1577 - 1583
  • [3] New parity results for 3-regular partitions
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2023, 46 (03) : 465 - 471
  • [4] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80
  • [5] Arithmetic properties of 3-regular partitions with distinct odd parts
    Veena, V. S.
    Fathima, S. N.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 69 - 80
  • [6] Arithmetic properties of 3-regular 6-tuple partitions
    Murugan, P.
    Fathima, S. N.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (04) : 1249 - 1261
  • [7] On 3-Regular Tripartitions
    Adiga, Chandrashekar
    Dasappa, Ranganatha
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (03) : 355 - 368
  • [8] Almost 3-regular overpartitions
    Ballantine, Cristina
    Merca, Mircea
    RAMANUJAN JOURNAL, 2022, 58 (03) : 957 - 971
  • [9] On 3-Regular Tripartitions
    ChANDrashekar ADIGA
    Ranganatha DASAPPA
    Acta Mathematica Sinica,English Series, 2019, (03) : 355 - 368
  • [10] On 3-Regular Tripartitions
    Chandrashekar Adiga
    Ranganatha Dasappa
    Acta Mathematica Sinica, English Series, 2019, 35 : 355 - 368