Bopp-Podolsky black holes and the no-hair theorem

被引:27
|
作者
Cuzinatto, R. R. [1 ,2 ]
de Melo, C. A. M. [2 ,3 ]
Medeiros, L. G. [3 ,4 ]
Pimentel, B. M. [3 ]
Pompeia, P. J. [5 ]
机构
[1] McGill Univ, Dept Phys, Ernest Rutherford Phys Bldg,3600 Univ St, Montreal, PQ H3A 2T8, Canada
[2] Univ Fed Alfenas, Inst Ciencia & Tecnol, Rod Jose Aurelio Vilela,BR 267,Km 533,11999, BR-37701970 Pocos De Caldas, MG, Brazil
[3] Univ Estadual Paulista, Inst Fis Teor, Rua Bento Teobaldo Ferraz 271 Bloco 2,POB 70532-2, BR-01156970 Sao Paulo, SP, Brazil
[4] Univ Fed Rio Grande do Norte, Escola Ciencia & Tecnol, Campus Univ S-N, BR-59078970 Natal, RN, Brazil
[5] Inst Tecnol Aeronaut, Dept Fis, Praca Mal Eduardo Gomes 50, BR-12228900 Sao Jose Dos Campos, SP, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2018年 / 78卷 / 01期
关键词
EINSTEIN-PROCA MODEL; SELF-INTERACTION; BARYON NUMBER; SCALAR FIELD; ELECTRODYNAMICS; PARTICLE; MASS; NONEXISTENCE; GRAVITATION; QUANTUM;
D O I
10.1140/epjc/s10052-018-5525-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Bopp-Podolsky electrodynamics is generalized to curved space-times. The equations of motion are written for the case of static spherically symmetric black holes and their exterior solutions are analyzed using Bekenstein's method. It is shown that the solutions split up into two parts, namely a non-homogeneous (asymptotically massless) regime and a homogeneous (asymptotically massive) sector which is null outside the event horizon. In addition, in the simplest approach to Bopp-Podolsky black holes, the non-homogeneous solutions are found to be Maxwell's solutions leading to a Reissner-Nordstrom black hole. It is also demonstrated that the only exterior solution consistent with the weak and null energy conditions is the Maxwell one. Thus, in the light of the energy conditions, it is concluded that only Maxwell modes propagate outside the horizon and, therefore, the no-hair theorem is satisfied in the case of Bopp-Podolsky fields in spherically symmetric space-times.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Spherically Symmetric Scalar Hair for Charged Black Holes
    Hong J.-P.
    Suzuki M.
    Yamada M.
    Physical Review Letters, 2020, 125 (11):
  • [42] Shadows of Kerr black holes with and without scalar hair
    Cunha, Pedro V. P.
    Herdeiro, Carlos A. R.
    Radu, Eugen
    Runarsson, Helgi F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (09):
  • [43] Einstein-Born-Infeld black holes with a scalar hair in three dimensions
    Mazharimousavi, S. Habib
    Halilsoy, M.
    MODERN PHYSICS LETTERS A, 2015, 30 (33)
  • [44] TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. IV. RELATIVISTICALLY BROADENED IRON LINES
    Johannsen, Tim
    Psaltis, Dimitrios
    ASTROPHYSICAL JOURNAL, 2013, 773 (01)
  • [45] TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. III. QUASI-PERIODIC VARIABILITY
    Johannsen, Tim
    Psaltis, Dimitrios
    ASTROPHYSICAL JOURNAL, 2011, 726 (01)
  • [46] Divergence equations and uniqueness theorem of static black holes
    Nozawa, Masato
    Shiromizu, Tetsuya
    Izumi, Keisuke
    Yamada, Sumio
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (17)
  • [47] Extremal Kerr-Newman black holes with extremely short charged scalar hair
    Hod, Shahar
    PHYSICS LETTERS B, 2015, 751 : 177 - 183
  • [48] Two Spinning Black Holes Balanced by Their Synchronized Scalar Hair
    Herdeiro, Carlos A. R.
    Radu, Eugen
    PHYSICAL REVIEW LETTERS, 2023, 131 (12)
  • [49] TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. I. PROPERTIES OF A QUASI-KERR SPACETIME
    Johannsen, Tim
    Psaltis, Dimitrios
    ASTROPHYSICAL JOURNAL, 2010, 716 (01) : 187 - 197
  • [50] A Uniqueness Theorem for Degenerate Kerr-Newman Black Holes
    Chrusciel, Piotr T.
    Nguyen, Luc
    ANNALES HENRI POINCARE, 2010, 11 (04): : 585 - 609