Invariant sets for the varactor equation

被引:14
作者
Bartuccelli, MV
Deane, JHB [1 ]
Gentile, G
Marsh, L
机构
[1] Univ Surrey, Dept Math & Stat, Guildford GU2 7XH, Surrey, England
[2] Univ Rome Tre, Dipartimento Matemat, I-00146 Rome, Italy
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2066期
关键词
invariant sets; nonlinear circuit dynamics;
D O I
10.1098/rspa.2005.1569
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The differential equation x + y (x) over circle + gamma(x) over circle + x(mu) = f (t) with f (t) positive, periodic and continuous is studied. After describing some physical applications of this equation, we construct a variety of invariant sets for it, thereby partitioning the phase plane into regions in which solutions grow without bound and also those in which bounded periodic solutions exist.
引用
收藏
页码:439 / 457
页数:19
相关论文
共 9 条
[1]  
[Anonymous], 1974, Differential Equations, Dynamical Systems, and Linear Algebra
[2]   TRANSITION TO CHAOS IN A SIMPLE NONLINEAR CIRCUIT DRIVEN BY A SINUSOIDAL VOLTAGE SOURCE [J].
AZZOUZ, A ;
DUHR, R ;
HASLER, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1983, 30 (12) :913-914
[3]  
BARTUCCELLI MV, 2004, SELECTION RULES PERI
[4]   Chaotic behaviour of solutions to a perturbed Korteweg-de Vries equation [J].
Blyuss, KB .
REPORTS ON MATHEMATICAL PHYSICS, 2002, 49 (01) :29-38
[5]  
Deane J. H. B., 2004, INT S NONL THEOR ITS, P159
[6]  
GENTILE G, 2005, J MATH PHYS, V46, P21
[7]  
MARSH L, THESIS
[8]   SIMPLEST CHAOTIC NONAUTONOMOUS CIRCUIT [J].
MATSUMOTO, T ;
CHUA, LO ;
TANAKA, S .
PHYSICAL REVIEW A, 1984, 30 (02) :1155-1157
[9]  
Thompson JMT., 1997, APPL MECH REV, V50, P307, DOI DOI 10.1115/1.3101710