Multiple Classifier Systems for More Accurate Java']JavaScript Malware Detection

被引:0
|
作者
Yi, Zibo [1 ]
Ma, Jun [1 ]
Luo, Lei [1 ]
Yu, Jie [1 ]
Wu, Qingbo [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PROMOTION OF INFORMATION TECHNOLOGY (ICPIT 2016) | 2016年 / 66卷
关键词
machine learning; !text type='Java']Java[!/text]Script malware detection; multiple classifier system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The researches of JavaScript malware detection focus on machine learning techniques in recent years. These works extract features from JavaScript's abstract syntax tree for the training of classifiers and achieve satisfactory detection results. However, in the training set there exist some scripts that are not so representative and may cause occasional incorrect classification. We propose multiple classifier system (MCS) to reduce this kind of misclassification. As shown in the experiments, the accuracy increases because of the MCS while training time is slightly greater than the original classifier.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 50 条
  • [1] Improving Java']JavaScript Malware Classifier's Security against Evasion by Particle Swarm Optimization
    Yi, Zibo
    Ma, Jun
    Luo, Lei
    Yu, Jie
    Wu, Qingbo
    2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 1734 - 1740
  • [2] Next-generation antivirus for Java']JavaScript malware detection based on dynamic features
    de Lima, Sidney M. L.
    Souza, Danilo M.
    Pinheiro, Ricardo P.
    Silva, Sthefano H. M. T.
    Lopes, Petronio G.
    de Lima, Rafael D. T.
    de Oliveira, Jemerson R.
    Monteiro, Thyago de A.
    Fernandes, Sergio M. M.
    Albuquerque, Edison de Q.
    da Silva, Washington W. A.
    dos Santos, Wellington P.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1337 - 1370
  • [3] Detection of obfuscation in java']java malware
    Kumar, Renuka
    Vaishakh, Anand Raj Essar
    1ST INTERNATIONAL CONFERENCE ON INFORMATION SECURITY & PRIVACY 2015, 2016, 78 : 521 - 529
  • [4] Detection of malicious java']javascript on an imbalanced dataset
    Phung, Ngoc Minh
    Mimura, Mamoru
    INTERNET OF THINGS, 2021, 13
  • [5] Detection of Obfuscated Malicious Java']JavaScript Code
    Alazab, Ammar
    Khraisat, Ansam
    Alazab, Moutaz
    Singh, Sarabjot
    FUTURE INTERNET, 2022, 14 (08):
  • [6] Building a practical and reliable classifier for malware detection
    Vatamanu, Cristina
    Gavrilut, Dragos
    Benchea, Razvan-Mihai
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2013, 9 (04): : 205 - 214
  • [7] Building a practical and reliable classifier for malware detection
    Cristina Vatamanu
    Dragoş Gavriluţ
    Răzvan-Mihai Benchea
    Journal of Computer Virology and Hacking Techniques, 2013, 9 (4) : 205 - 214
  • [8] Obfuscated Malicious Java']JavaScript Detection by Machine Learning
    Pan, Jinkun
    Mao, Xiaoguang
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 805 - 810
  • [9] Toward accurate and intelligent detection of malware
    Arfeen, Asad
    Khan, Zunair Ahmed
    Uddin, Riaz
    Ahsan, Usama
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (04):
  • [10] MUTIPLE CLASSIFIER SYSTEM BASED ANDROID MALWARE DETECTION
    Liu, Wen
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 57 - 62