Convergence of Weak Kahler-Ricci Flows on Minimal Models of Positive Kodaira Dimension

被引:15
作者
Eyssidieux, Phylippe [1 ,2 ]
Guedj, Vincent [3 ,4 ]
Zeriahi, Ahmed [3 ]
机构
[1] Univ Joseph Fourier, Grenoble, France
[2] Inst Univ France, Grenoble, France
[3] Univ Toulouse, CNRS, Inst Math Toulouse, UPS, 118 Route Narbonne, F-31062 Toulouse 09, France
[4] Univ Toulouse, CNRS, Inst Univ France, UPS, 118 Route Narbonne, F-31062 Toulouse 09, France
关键词
EINSTEIN METRICS; VISCOSITY SOLUTIONS; EQUATIONS;
D O I
10.1007/s00220-018-3087-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Studying the behavior of the Kahler-Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge-AmpSre equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kahler-Ricci flow on mildly singular varieties of positive Kodaira dimension, generalizing results of Song and Tian who dealt with smooth minimal models.
引用
收藏
页码:1179 / 1214
页数:36
相关论文
共 34 条
[1]  
Ambro F, 2004, J DIFFER GEOM, V67, P229
[2]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[3]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[4]  
[Anonymous], 1994, P CTR MATH APPL AUST
[5]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[6]  
Berman R., KAHLER EINS IN PRESS
[7]  
Campana F, 2016, ANN SCI ECOLE NORM S, V49, P971
[9]  
Choi Y.-J., ARXIV150800323V4
[10]   Extension of plurisubharmonic functions with growth control [J].
Coman, Dan ;
Guedj, Vincent ;
Zeriahi, Ahmed .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 676 :33-49